生物多样性 ›› 2024, Vol. 32 ›› Issue (11): 24288. DOI: 10.17520/biods.2024288 cstr: 32101.14.biods.2024288
原雪姣1,2(), 张渊媛2,3,*(
)(
), 张衍亮1(
), 胡璐祎1(
), 桑卫国1,*(
)(
), 杨峥2,3(
), 陈颀2,3
收稿日期:
2024-07-01
接受日期:
2024-09-30
出版日期:
2024-11-20
发布日期:
2025-01-24
通讯作者:
E-mail: 基金资助:
Xuejiao Yuan1,2(), Yuanyuan Zhang2,3,*(
)(
), Yanliang Zhang1(
), Luyi Hu1(
), Weiguo Sang1,*(
)(
), Zheng Yang2,3(
), Qi Chen2,3
Received:
2024-07-01
Accepted:
2024-09-30
Online:
2024-11-20
Published:
2025-01-24
Contact:
E-mail: Supported by:
摘要:
物种分布模型常被用于预测和管理入侵物种。然而, 这些预测工作假设物种现实生态位保持稳定, 但实际在入侵过程中是不确定的, 因此基于早期的分布数据预测后期的真实分布具有挑战性。本文基于我国重点管理的外来入侵植物——飞机草(Chromolaena odorata) 1934-2024年原产地及我国的分布记录和环境变量, 采用NicheA和COUE (centroid shift, overlap, unfilling, and expansion)框架分析其现实生态位的时空变化, 结合时间序列物种分布模型(过去4个阶段及2040时段未来气候情境)和物种扩散能力, 分析了飞机草的时空分布格局。使用优化后的MaxEnt模型, 将每一时期的模型投影至下个时期, 由于物种记录已知, 因此可检测模型的预测与飞机草在我国的实际扩张是否一致。 结果显示: (1) 1989年前飞机草在我国的现实气候生态位稳定性最高(niche stability = 1), 1989年后生态位略有扩张(1934-2009年: niche expansion (NE) = 0.08, 1934-2024年: NE = 0.09), 生态位扩张来源于台湾省的分布数据, 其余各省的现实气候生态位仍保持稳定。(2)基于过去物种记录的模型能够较好地预测出飞机草已知的分布(测试数据AUC为0.873-0.887, 10%训练数据下的遗漏率为0.131-0.152), 不同时期的物种分布模型产生了相似的潜在分布。在入侵早期阶段, 开发的物种分布模型提供了有用的见解, 但与后期阶段构建的模型相比, 也往往低估了潜在范围, 与1969年前相比, 飞机草在中国的适宜分布范围增加了71.8%-77.3%, 向北扩散至贵州南部、广西和广东北部及江西北部, 向东扩散至福建省。(3)基于未来气候变化情境和飞机草的扩散能力拟合的物种分布模型显示, 到2040年, 飞机草向北将到达重庆与四川交界处, 向东将扩散至浙江南部部分地区及江西东部。本研究可为入侵生物物种分布模型的拟合过程和飞机草在我国的管理提供参考。
原雪姣, 张渊媛, 张衍亮, 胡璐祎, 桑卫国, 杨峥, 陈颀 (2024) 基于飞机草历史分布数据拟合的物种分布模型及其预测能力. 生物多样性, 32, 24288. DOI: 10.17520/biods.2024288.
Xuejiao Yuan, Yuanyuan Zhang, Yanliang Zhang, Luyi Hu, Weiguo Sang, Zheng Yang, Qi Chen (2024) Investigating the prediction ability of the species distribution model fitted with the historical distribution records of Chromolaena odorata. Biodiversity Science, 32, 24288. DOI: 10.17520/biods.2024288.
年 Year | 曲线下面积 Area under curve (AUC) | 遗漏率 Omission rate | 参数设置 Parameter settings (调控倍频/特征组合 Regularization multiplier/feature combination) | ||
---|---|---|---|---|---|
训练数据 Training data | 测试数据 Testing data | 训练数据 Training data | 测试数据 Testing data | ||
1934-1969 | 0.928 | 0.873 | 0.095 | 0.232 | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1989 | 0.899 | 0.881 | 0.098 | 0.152 | 1.5/H 片段化 Hinge |
1934-2009 | 0.878 | 0.887 | 0.099 | 0.131 | 1.0/L 线性 Linear |
1934-2024 | 0.849 | - | 0.102 | - | 1.0/LQ 线性和二次型 Linear and quadratic |
表1 MaxEnt模型的AUC值、10%训练数据下的遗漏率和参数设置
Table 1 The AUC value, omission rate of the 10% training presence and parameter settings of MaxEnt models
年 Year | 曲线下面积 Area under curve (AUC) | 遗漏率 Omission rate | 参数设置 Parameter settings (调控倍频/特征组合 Regularization multiplier/feature combination) | ||
---|---|---|---|---|---|
训练数据 Training data | 测试数据 Testing data | 训练数据 Training data | 测试数据 Testing data | ||
1934-1969 | 0.928 | 0.873 | 0.095 | 0.232 | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1989 | 0.899 | 0.881 | 0.098 | 0.152 | 1.5/H 片段化 Hinge |
1934-2009 | 0.878 | 0.887 | 0.099 | 0.131 | 1.0/L 线性 Linear |
1934-2024 | 0.849 | - | 0.102 | - | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1969 | 1934-1989 | 1934-2009 | 1934-2024 | |
---|---|---|---|---|
生态位稳定性 Niche stability | 1 | 1 | 0.92 | 0.91 |
生态位扩张性 Niche expansion | 0 | 0 | 0.08 | 0.09 |
生态位重叠 Niche overlap | 0.499 | 0.512 | 0.579 | 0.598 |
生态位等效性 Niche equivalence | 0.045 | 0.039 | 0.031 | 0.027 |
生态位相似性 Niche similarity N→I | 0.048 | 0.044 | 0.039 | 0.029 |
生态位相似性 Niche similarity I→N | 0.039 | 0.035 | 0.027 | 0.021 |
表2 不同时期飞机草与原产地现实气候生态位的比较
Table 2 Realized climate niche of Chromolaena odorata in different periods compared with the native region
1934-1969 | 1934-1989 | 1934-2009 | 1934-2024 | |
---|---|---|---|---|
生态位稳定性 Niche stability | 1 | 1 | 0.92 | 0.91 |
生态位扩张性 Niche expansion | 0 | 0 | 0.08 | 0.09 |
生态位重叠 Niche overlap | 0.499 | 0.512 | 0.579 | 0.598 |
生态位等效性 Niche equivalence | 0.045 | 0.039 | 0.031 | 0.027 |
生态位相似性 Niche similarity N→I | 0.048 | 0.044 | 0.039 | 0.029 |
生态位相似性 Niche similarity I→N | 0.039 | 0.035 | 0.027 | 0.021 |
图3 1934-2024年飞机草在我国适宜区域的时间演变(基于10th训练数据适宜性值的二值化分布)
Fig. 3 Temporal evolution of suitable regions of Chromolaena odorata in 1934-2024 (binary map based on 10th suitability value)
图4 飞机草2021-2040年的潜在扩散趋势。(A)短距离扩散; (B)长短距离结合扩散。
Fig. 4 Potential dispersal trend of Chromolaena odorata from 2021 to 2040. (A) Short-distance dispersal; (B) Short-combined long-distance dispersal.
[1] | Atwater DZ, Barney JN (2021) Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Global Ecology and Biogeography, 30, 1671-1684. |
[2] | Bang A, Cuthbert RN, Haubrock PJ, Fernandez RD, Moodley D, Diagne C, Turbelin AJ, Renault D, Dalu T, Courchamp F (2022) Massive economic costs of biological invasions despite widespread knowledge gaps: A dual setback for India. Biological Invasions, 24, 2017-2039. |
[3] | Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13, e0193085. |
[4] |
Blackburn TM, Bellard C, Ricciardi A (2019) Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment, 17, 203-207.
DOI |
[5] | Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. |
[6] | Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. |
[7] |
Briscoe Runquist RD, Lake T, Tiffin P, Moeller DA (2019) Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Scientific Reports, 9, 2426.
DOI PMID |
[8] | Cola VD, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787. |
[9] | Courchamp F, Fournier A, Bellard C, Bertelsmeier C, Bonnaud E, Jeschke JM, Russell JC (2017) Invasion biology: Specific problems and possible solutions. Trends in Ecology & Evolution, 32, 13-22. |
[10] | Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA, Leroy B, Angulo E, Briski E, Capinha C, Catford JA, Dalu T, Essl F, Gozlan RE, Haubrock PJ, Kourantidou M, Kramer AM, Renault D, Wasserman RJ, Courchamp F (2021) Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, 145238. |
[11] | Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576. |
[12] | Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package-seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878. |
[13] | Essl F, Lenzner B, Bacher S, Bailey S, Capinha C, Daehler C, Dullinger S, Genovesi P, Hui C, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Leung B, Liebhold A, Liu CL, MacIsaac HJ, Meyerson LA, Nuñez MA, Pauchard A, Pyšek P, Rabitsch W, Richardson DM, Roy HE, Ruiz GM, Russell JC, Sanders NJ, Sax DF, Scalera R, Seebens H, Springborn M, Turbelin A, van Kleunen M, von Holle B, Winter M, Zenni RD, Mattsson BJ, Roura-Pascual N (2020) Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26, 4880-4893. |
[14] | Gan QL (2007) A malignant invasive plant Chromolaena odorata was found in Zhuxi. Hubei Daily, 2007-09-07, 004. (in Chinese) |
[甘啟良 (2007) 竹溪发现恶性入侵植物飞机草. 湖北日报, 2007年09月07日, 第004版.] | |
[15] | Guareschi S, Cancellario T, Oficialdegui FJ, Clavero M (2024) Insights from the past: Invasion trajectory and niche trends of a global freshwater invader. Global Change Biology, 30, e17059. |
[16] | Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29, 260-269. |
[17] | Guisan A, Theurillat JP (2000) Equilibrium modeling of alpine plant distribution: How far can we go? Phytocoenologia, 30, 353-384. |
[18] | Hijmans RJ, Phillips S, Leathwick J, Elith J (2020) Dismo: Species distribution modeling. R Package Version 1.3-3. https://CRAN.Rproject.org/package=dismo/. (accessed on 2024-04-22) |
[19] | Hill MP, Gallardo B, Terblanche JS (2017) A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26, 679-689. |
[20] | Hulme PE (2017) Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92, 1297-1313. |
[21] | Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change 2021:The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[22] | Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mrugała A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M (2015) Ecological impacts of alien species: Quantification, scope, caveats, and recommendations. BioScience, 65, 55-63. |
[23] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[24] | Liu CL, Wolter C, Courchamp F, Roura-Pascual N, Jeschke JM (2022) Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103, e3719. |
[25] | Lu P, Sang WG, Ma KP (2006) Activity of antioxidant enzymes in the invasive plant Eupatorium odoratum under various environmental stresses. Acta Ecologica Sinica, 26, 3578-3585. (in Chinese with English abstract) |
[鲁萍, 桑卫国, 马克平 (2006) 外来入侵种飞机草在不同环境胁迫下抗氧化酶系统的变化. 生态学报, 26, 3578-3585.] | |
[26] | Lustenhouwer N, Parker IM (2022) Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 49, 1481-1493. |
[27] | Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22, 302-317. |
[28] | Marchioro CA, Krechemer FS (2024) Reconstructing the biological invasion of Tuta absoluta: Evidence of niche shift and its consequences for invasion risk assessment. Journal of Pest Science, 97, 127-141. |
[29] | Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069. |
[30] | Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution, 5, 1198-1205. |
[31] | Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419-433. |
[32] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[33] | Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of MaxEnt. Ecography, 40, 887-893. |
[34] | Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813. |
[35] | Quan GM, Zhang JE, Xu HQ, Mao DJ, Xie JF (2009) Biological characteristics and control strategies of alien invasive plant Eupatorium odoratum. Chinese Agricultural Science Bulletin, 25(9), 236-243. (in Chinese with English abstract) |
[全国明, 章家恩, 徐华勤, 毛丹鹃, 谢俊芳 (2009) 外来入侵植物飞机草的生物学特性及控制策略. 中国农学通报, 25(9), 236-243.] | |
[36] | R Core Team (2020) R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2024-01-20) |
[37] | Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W, Dullinger S, Genovesi P, Hulme PE, van Kleunen M, Kühn I, Jeschke JM, Lenzner B, Liebhold AM, Pattison Z, Pergl J, Pyšek P, Winter M, Essl F (2021) Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970-982. |
[38] |
Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Diversity and Distributions, 25, 1599-1612.
DOI |
[39] | Simberloff D (2021) Maintenance management and eradication of established aquatic invaders. Hydrobiologia, 848, 2399-2420. |
[40] | Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts methods and assumptions. Proceedings of the National Academy of Sciences, USA, 106, 19644-19650. |
[41] | Vaissi S, Rezaei S (2023) Climatic niche dynamics in the invasive nutria, Myocastor coypus: Global assessment under climate change. Biological Invasions, 25, 2763-2774. |
[42] | Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36, 2290-2299. |
[43] | Wang R (2006) Historical Reconstruction of Invasion and Expansion and Potential Spread of Some Threatening Invasive Alien Species in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[王瑞 (2006) 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[44] | Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397-408. |
[45] |
Warren DL, Seifert SN (2011) Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335-342.
PMID |
[46] | Wei B, Liu LS, Gu CJ, Yu HB, Zhang YL, Zhang BH, Cui BH, Gong DQ, Tu YL (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodiversity Science, 30, 21443 (in Chinese with English abstract) |
[魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽 (2022) 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋. 生物多样性, 30, 21443.]
DOI |
|
[47] | Wei TY, Simko V (2021) R Package ’Corrplot’: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplot/. (accessed on 2024-04-22) |
[48] | Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Research, 44, 129-135. |
[49] | Yu FK, Akin-Fajiye M, Thapa Magar K, Ren J, Gurevitch J, Rejmanek M (2016) A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Diversity and Distributions, 22, 1174-1185. |
[50] | Yu XQ, Feng YL, Li QM (2010) Review of research advances and prospects of invasive Chromolaena odorata. Chinese Journal of Plant Ecology, 34, 591-600. (in Chinese with English abstract) |
[余香琴, 冯玉龙, 李巧明 (2010) 外来入侵植物飞机草的研究进展与展望. 植物生态学报, 34, 591-600.]
DOI |
|
[51] | Zhang LY, Zhu M, Wan Y, Liu XF (2023) Multiple invasion trajectories induce niche dynamics inconsistency and increase risk uncertainty of a plant invader. Ecosphere, 14, e4483. |
[52] | Zhu GP, Illan GJ, Looney C, Crowder DW (2020) Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences, USA, 117, 24646-24648. |
[53] |
Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract)
DOI |
[朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
DOI |
[1] | 杜聪聪, 冯学宇, 陈志林. 桥头堡效应中气候生态位差异的缩小促进了红火蚁的入侵[J]. 生物多样性, 2024, 32(11): 24276-. |
[2] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[3] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[4] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[5] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[6] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[7] | 王文婷, 杨婷婷, 金磊, 蒋家民. 未来气候变化下两种红景天植物的脆弱性[J]. 生物多样性, 2021, 29(12): 1620-1628. |
[8] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[9] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[10] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[11] | 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. |
[12] | 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[13] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[14] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
[15] | 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189-1196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn