生物多样性 ›› 2017, Vol. 25 ›› Issue (12): 1285-1294. DOI: 10.17520/biods.2017096
所属专题: 生物入侵
孙燕1,*(), 周忠实2, 王瑞2, HeinzMüller-Schärer3
收稿日期:
2017-03-24
接受日期:
2017-06-10
出版日期:
2017-12-20
发布日期:
2017-12-10
通讯作者:
孙燕
基金资助:
Yan Sun1,*(), Zhongshi Zhou2, Rui Wang2, Heinz Müller-Schärer3
Received:
2017-03-24
Accepted:
2017-06-10
Online:
2017-12-20
Published:
2017-12-10
Contact:
Sun Yan
摘要:
外来入侵植物对入侵地的生态系统与社会经济可造成严重的威胁。如何控制入侵植物对自然资源的危害, 向人类提出了极大的挑战。利用原产地的专食性天敌来控制入侵植物已被广泛证明是一种经济、可持续的生物防治手段。在全球气候变暖的背景下, 生物防治研究的关键问题是全面了解物种的潜在分布区和传播范围, 进而优化入侵植物的生物防治方案。本研究利用生物地理模型, 通过预测两种生物防治昆虫和它们的组合在东亚地区的适宜分布区, 预测豚草(Ambrosia artemisiifolia)的生物防治区域。豚草原产北美, 目前已经入侵全球多个国家和地区。20世纪末, 豚草条纹叶甲(Ophraella communa)和豚草卷蛾(Epiblema strenuana)作为豚草的生物防治昆虫从原产地引入到东亚地区。本研究旨在探讨如下问题: (1)在豚草的适宜生长分布区内, 有多少区域也同样适宜其两种天敌的生存?(2)在目前和未来的气候背景下, 有多少区域适宜豚草生长但是不适宜它的两种天敌生长?(3)在这些适宜豚草生长却不适宜两种昆虫天敌生长的区域内, 需要选择哪些特定的生物型进行投放?为此, 我们基于入侵植物和两种生物防治昆虫的全球分布记录及其分布点的重要生物气候因子, 同时模拟了入侵植物及其两种生物防治天敌在东亚地区的分布范围。排序技术被用来探索气候因子对每个物种的限制作用, 同时也用来检验豚草在北美和东亚地区的生态位重叠和相似性。结果表明, 在当前和未来的气候背景下, 相较于豚草卷蛾, 豚草条纹叶甲与豚草的地理分布范围更加吻合(当前气候: 40.3% vs. 21.6%, 未来气候: 29.8% vs. 20.3%)。气候变化可能会导致两种生物防治天敌(尤其是豚草条纹叶甲)的地理分布与豚草的地理分布的重叠区域减少(42.9% vs. 29.9%)。本研究同时提出了温度和降水等气候因子可用于为特殊区域(生物防治天敌未覆盖的豚草分布区)筛选生物防治天敌的相应株系。
孙燕, 周忠实, 王瑞, HeinzMüller-Schärer (2017) 气候变化预计会减少东亚地区豚草的生物防治效果**. 生物多样性, 25, 1285-1294. DOI: 10.17520/biods.2017096.
Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer (2017) Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia. Biodiversity Science, 25, 1285-1294. DOI: 10.17520/biods.2017096.
Ambrosia artemisiifolia | Ophraella communa | Epiblema strenuana | |
---|---|---|---|
当前气候背景 Current climate scenario | |||
一般线性模型 GLM | 0.88±0.002 | 0.88±0.004 | 0.84±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.003 | 0.89±0.006 |
随机森林模型 RF | 0.89±0.003 | 0.91±0.003 | 0.89±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.83±0.004 | 0.83±0.009 |
未来气候背景: HD-26 Future climate scenario: HD-26 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.83±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.002 | 0.90±0.006 |
随机森林模型 RF | 0.90±0.002 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.86±0.003 | 0.83±0.003 | 0.80±0.01 |
未来气候背景: HD-85 Future climate scenario: HD-85 | |||
一般线性模型 GLM | 0.88±0.003 | 0.88±0.002 | 0.84±0.008 |
广义助推模型 GBM | 0.90±0.003 | 0.92±0.001 | 0.86±0.008 |
随机森林模型 RF | 0.89±0.003 | 0.92±0.001 | 0.86±0.009 |
最大熵模型MaxEnt | 0.88±0.003 | 0.84±0.003 | 0.78±0.01 |
未来气候背景: IP-26 Future climate scenario: IP-26 | |||
一般线性模型 GLM | 0.89±0.003 | 0.87±0.002 | 0.87±0.01 |
广义助推模型 GBM | 0.90±0.002 | 0.90±0.002 | 0.91±0.008 |
随机森林模型 RF | 0.91±0.002 | 0.91±0.001 | 0.91±0.008 |
最大熵模型MaxEnt | 0.89±0.003 | 0.85±0.002 | 0.82±0.009 |
未来气候背景: IP-85 Future climate scenario: IP-85 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.88±0.008 |
广义助推模型 GBM | 0.89±0.003 | 0.90±0.002 | 0.91±0.006 |
随机森林模型 RF | 0.91±0.003 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.84±0.003 | 0.88±0.008 |
表1 4种模型预测的当前和未来气候情景下的AUC值, 显示可接受的AUC分数
Table 1 AUC power of all species using four models under current and future climate scenarios showing acceptable AUC scores
Ambrosia artemisiifolia | Ophraella communa | Epiblema strenuana | |
---|---|---|---|
当前气候背景 Current climate scenario | |||
一般线性模型 GLM | 0.88±0.002 | 0.88±0.004 | 0.84±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.003 | 0.89±0.006 |
随机森林模型 RF | 0.89±0.003 | 0.91±0.003 | 0.89±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.83±0.004 | 0.83±0.009 |
未来气候背景: HD-26 Future climate scenario: HD-26 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.83±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.002 | 0.90±0.006 |
随机森林模型 RF | 0.90±0.002 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.86±0.003 | 0.83±0.003 | 0.80±0.01 |
未来气候背景: HD-85 Future climate scenario: HD-85 | |||
一般线性模型 GLM | 0.88±0.003 | 0.88±0.002 | 0.84±0.008 |
广义助推模型 GBM | 0.90±0.003 | 0.92±0.001 | 0.86±0.008 |
随机森林模型 RF | 0.89±0.003 | 0.92±0.001 | 0.86±0.009 |
最大熵模型MaxEnt | 0.88±0.003 | 0.84±0.003 | 0.78±0.01 |
未来气候背景: IP-26 Future climate scenario: IP-26 | |||
一般线性模型 GLM | 0.89±0.003 | 0.87±0.002 | 0.87±0.01 |
广义助推模型 GBM | 0.90±0.002 | 0.90±0.002 | 0.91±0.008 |
随机森林模型 RF | 0.91±0.002 | 0.91±0.001 | 0.91±0.008 |
最大熵模型MaxEnt | 0.89±0.003 | 0.85±0.002 | 0.82±0.009 |
未来气候背景: IP-85 Future climate scenario: IP-85 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.88±0.008 |
广义助推模型 GBM | 0.89±0.003 | 0.90±0.002 | 0.91±0.006 |
随机森林模型 RF | 0.91±0.003 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.84±0.003 | 0.88±0.008 |
图1 在当前和未来气候情景下, 东亚地区的豚草与其两种专食性天敌的地理分布预测。气候适宜度代表每个物种最佳适宜度阈值百分比。所有图中的深绿色代表的是豚草适宜分布区。在当前气候背景下: (A)红色为豚草条纹叶甲分布区, 褐色为豚草条纹叶甲与豚草适宜分布区的重叠区域, 占豚草适宜分布区的40.3%; (B)蓝色为豚草卷蛾分布区, 褐色为豚草卷蛾与豚草适宜分布区的重叠区域, 占豚草适宜分布区的21.6%。未来气候条件下: (C)红色为豚草条纹叶甲分布区, 褐色为豚草条纹叶甲与豚草适宜分布区的重叠区域, 占豚草适宜分布区的29.8%; (D)蓝色为豚草卷蛾分布区, 褐色为豚草卷蛾与豚草适宜分布区的重叠区域, 占豚草适宜分布区的20.3%。模型的模拟是基于东亚地区进行的。
Fig. 1 Geographical predictions of Ambrosia artemisiifolia and two biological control insects for East Asia, under present and future climatic scenarios. The climatic suitability indicates the optimal threshold of the percentage of models predicting each species. Dark green in all figures, A. artemisiifolia; under current climatic conditions: (A) Red, Ophraella communa; sienna, overlap 40.3%; (B) Blue, Epiblema strenuana; sienna, overlap 21.6%; under future climatic scenarios: (C) Red, Ophraella communa; sienna, overlap 29.8%; (D) Blue, Epiblema strenuana; sienna, overlap 20.3%. Models calibrated in East Asia only.
图2 对豚草生态位在气候空间的主成分分析结果。A图和B图分别代表豚草在原产地北美和入侵地东亚地区的生态位, 沿主成分1和主成分2的坐标图。灰色阴影显示物种在网格上分布记录的密度。实线的轮廓线表明100%的背景环境, 虚线轮廓表明最常见的50%的背景环境。A图和B图中的黄色圆圈分别代表北美和东亚地区两种天敌的分布记录。C图表示的是气候变量对主成分的两个坐标轴的贡献值并给出两个坐标轴解释变量的百分比。D-F的柱形图表示北美和东亚两个区域内观察到的生态位重叠(线条和菱形)。(D)东亚和北美地区生态位等价性检验; (E)东亚到北美地区的生态位相似性; (F)北美到东亚的生态位相似性。
Fig. 2 Niche of Ambrosia artemisiifolia in climatic space using principal component analysis (PCA-env). Panels (A) and (B) represent the niche of the species along the two first axes of the PCA for the native North American (NA) and introduced East Asian (EA) range, respectively. Gray shading shows the density of the occurrences of the species by the cell. The solid contour lines illustrate 100% of the available environment, and dashed lines indicate the 50% of the most common background environment. Yellow circles in (A) and (B) give the occurrences of two insect species in NA and in EA. The contribution of the climatic variables of the two axes of the PCA and the percentage of inertia explained by the two axes is given in (C). Histograms (D-F) show the observed niche overlap between the two ranges (bars and a diamond) and simulated niche overlaps (gray bars) on which tests of niche equivalency (D), niche similarity of EA and NA (E), and niche similarity of NA and EA (F) are calculated from 100 iterations, with the significance level of the tests.
[1] | Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42-47. |
[2] | Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science, 332, 220-224. |
[3] | Björkman C, Niemelä P (2015) Climate Change and Insect Pests. CABI, Oxfordshire, UK. |
[4] | Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. |
[5] | Broennimann O, Petitpierre B, Randin C, Engler R, Breiner F, Manuela D, Pellissier L, Pottier J, Pio D, Mateo RG (2014) Package ‘ecospat’. . |
[6] | Cola VD, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A (2016) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787. |
[7] | Essl F, Biró K, Brandes D, Broennimann O, Bullock JM, Chapman DS, Chauvel B, Dullinger S, Fumanal B, Guisan A (2015) Biological flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 103, 1069-1098. |
[8] | Fukano Y, Doi H (2013) Population abundance and host use pattern of Ophraella communa (Coleoptera: Chrysomelidae) in its native and introduced range. Biocontrol Science and Technology, 23, 595-601. |
[9] | Fukano Y, Yahara T (2012) Changes in defense of an alien plant Ambrosia artemisiifolia before and after the invasion of a native specialist enemy Ophraella communa. PLoS ONE, 7, e49114. |
[10] | Futuyma DJ, McCafferty SS (1990) Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution, 44, 1885-1913. |
[11] | Gerber E, Schaffner U, Gassmann A, Hinz H, Seier M, Müller-Schärer H (2011) Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Research, 51, 559-573. |
[12] | Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends in Ecology and Evolution, 28, 135-142. |
[13] | Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572-597. |
[14] | Goolsby JA, De Barro PJ, Kirk AA, Sutherst RW, Canas L, Ciomperlik MA, Ellsworth PC, Gould JR, Hartley DM, Hoelmer KA (2005) Post-release evaluation of biological control of Bemisia tabaci biotype “B” in the USA and the development of predictive tools to guide introductions for other countries. Biological Control, 32, 70-77. |
[15] | Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186. |
[16] | Hannah L, Midgley GF, Millar D (2002) Climate change— integrated conservation strategies. Global Ecology and Biogeography, 11, 485-495. |
[17] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[18] | Hisauchi K (1950) Naturalized Plants. Kagakutosyo syuppan, Tokyo. |
[19] | Hoelmer K, Kirk A (2005) Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents? Biological Control, 34, 255-264. |
[20] | IPCC (2013) Climate change 2013: The Physical Science Basis. |
[21] | Kettenring KM, Adams CR (2011) Lessons learned from invas¬ive plant control experiments: a systematic review and meta-analysis. Journal of Applied Ecology, 48, 970-979. |
[22] | LeSage L (1986) A taxonomic monograph of the Nearctic galerucine genus Ophraella Wilcox (Coleoptera: Chryso¬m¬elidae). Memoirs of the Entomological Society of Canada, 118, 3-75. |
[23] | Li HK, Li M, Li D (1999) Ambrosia artemisiifolia and its biological control. World Agriculture, (8), 40-41. (in Chinese) |
[李宏科, 李萌, 李丹 (1999) 豚草及其防治概况. 世界农业, (8), 40-41.] | |
[24] | Ma J, Guo JY, Wan FH, Hu X, Wan FH, Li B, Guo J (2008) Biological control of Ambrosia artemisiifolia and A. trifida. In: Biological Invasions: Biological Control Theory and Practice, pp. 157-185. Science Press, Beijing. (in Chinese with English abstract) |
[马骏, 郭建英, 万方浩 (2008) 普通豚草和三裂叶豚的生物防治, 见: 生物入侵: 生物防治篇(万方浩, 李保平, 郭建英主编), 157-185页. 科学出版社, 北京.] | |
[25] | McFadyen RC (1992) Biological control against Parthenium weed in Australia. Crop Protection, 11, 400-407. |
[26] | Messenger P, van den Bosch R(1971) The adaptability of introduced biological control agents. In: Biological Control (ed. Huffaker CB), pp. 68-92. Springer, Boston. |
[27] | Moriya S, Shiyake S (2001) Spreading the distribution of an exotic ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in Japan. Japanese Journal of Entomology (New Series), 4, 99-102. |
[28] | Mukherjee A, Christman MC, Overholt WA, Cuda JP (2011) Prioritizing areas in the native range of hygrophila for surveys to collect biological control agents. Biological Control, 56, 254-262. |
[29] | Müller-Schärer H, Schaffner U (2008) Classical biological control: exploiting enemy escape to manage plant invasions. Biological Invasions, 10, 859-874. |
[30] | Palmer W, Goeden R (1991) The host range of Ophraella communa LeSage (Coleoptera: Chrysomelidae). The Coleopterists’ Bulletin, 45, 115-120. |
[31] | Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245. |
[32] | Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419-433. |
[33] | Peterson AT (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press, New Jursey. |
[34] | Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. |
[35] | R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. . |
[36] | Roderick GK, Hufbauer R, Navajas M (2012) Evolution and biological control. Evolutionary Applications, 5, 419-423. |
[37] | Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology, 89, 3472-3479. |
[38] | Seastedt TR (2015) Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytologist, 205, 490-502. |
[39] | Sun Y, Brönnimann O, Roderick GK, Poltavsky A, Lommen STE, Müller-Schärer H (2017) Climatic suitability ranking of candidate biological control agents for weeds: a biogeographic approach for ragweed management in Europe under present and future climatic conditions. Ecosphere, 8, e01731. |
[40] | Tanaka K (2009) Genetic variation in flight activity of Ophraella communa (Coleoptera: Chrysomelidae): heritability estimated by artificial selection. Environmental Entomology, 38, 266-273. |
[41] | Tanaka K, Murata K, Matsuura A (2015) Rapid evolution of an introduced insect Ophraella communa LeSage in new environments: temporal changes and geographical differences in photoperiodic response. Entomological Science, 18, 104-112. |
[42] | Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273. |
[43] | Thuiller W, Georges D, Engler R (2013) Biomod2: ensemble platform for species distribution modeling. R package. . |
[44] | Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708. |
[45] | Walker B, Steffen W (1997) An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology, 1, 2. |
[46] | Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H (2009) Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686-693. |
[47] | Wan FH, Liu WX, Ma J, Guo J (2005) Ambrosia artemisiifolia and A. trifida. In: Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan FH, Zheng XB, Guo JY), pp. 662-688. Science Press, Beijing. (in Chinese) |
[万方浩, 刘万学, 马骏, 郭建英 (2005) 普通豚草和三裂叶豚草. 见: 重要农林外来入侵物种的生物学与控制(万方浩, 郑小波, 郭建英主编), 662-688页. 科学出版社, 北京.] | |
[48] | Wan FH, Guan GQ, Wang R (1993) Ambrosia and Its Comprehensive Administration. Chinese Science and Technology Press, Beijing. |
(in Chinese) [万方浩, 关广清, 王韧 (1993) 豚草及豚草综合治理. 中国科学技术出版社, 北京.] | |
[49] | Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH (2014) Biological Control of Weeds: A World Catalogue of Agents and Their Target Weeds, 5th edn. USDA Forest Service, Forest Health Technology Enterprise Team, Virginia. |
[50] | Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773. |
[51] | Yamazaki K, Imai C, Natuhara Y (2000) Rapid population growth and food-plant exploitation pattern in an exotic leaf beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in western Japan. Applied Entomology and Zoology, 35, 215-223. |
[52] | Zhou ZS, Chen HS, Zheng XW, Guo JY, Guo W, Li M, Luo M, Wan FH (2014) Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema str¬enuana. Biocontrol Science and Technology, 24, 950-964. |
[53] | Zhou ZS, Guo JY, Chen HS, Wan FH (2010) Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae). Environmental Entomology, 39, 1021-1027. |
[54] | Zhou ZS, Guo JY, Michaud JP, Li M, Wan FH (2011a) Variation in cold hardiness among geographic populations of the ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifolia L. (Asterales: Asteraceae), in China. Biological Invasions, 13, 659-667. |
[55] | Zhou ZS, Guo JY, Wan FH (2015) Review on management of Ambrosia artemisiifolia using natural enemy insects. Chinese Journal of Biological Control, 31, 657-665. |
[56] | Zhou ZS, Guo JY, Zheng XW, Luo M, Chen HS, Wan FH (2011b) Reevaluation of biosecurity of Ophraella communa against sunflower (Helianthus annuus). Biocontrol Science and Technology, 21, 1147-1160. |
[57] | Zhou ZS, Rasmann S, Li M, Guo JY, Chen HS, Wan FH (2013) Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles. PLoS ONE, 8, e74760. |
[1] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[2] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[3] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[4] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[5] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[6] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[7] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[8] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[9] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[10] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[11] | 郝希阳, 贺姹, 楚克林, 申志新, 赵强, 高伟, 潘达, 孙红英. 海南岛淡水蟹类分布格局与多样性保护[J]. 生物多样性, 2021, 29(5): 605-616. |
[12] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[13] | 余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云. 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响[J]. 生物多样性, 2020, 28(7): 769-778. |
[14] | 王剑, 董乙乂, 马丽滨, 潘勃, 马方舟, 丁晖, 胡亚萍, 彭艳琼, 吴孝兵, 王波. 西双版纳国家级自然保护区蚂蚁-树互作网络空间变异[J]. 生物多样性, 2020, 28(6): 695-706. |
[15] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn