生物多样性 ›› 2017, Vol. 25 ›› Issue (12): 1285-1294.  DOI: 10.17520/biods.2017096

所属专题: 生物入侵

• 生物入侵专题 • 上一篇    下一篇

气候变化预计会减少东亚地区豚草的生物防治效果**

孙燕1,*(), 周忠实2, 王瑞2, HeinzMüller-Schärer3   

  1. 1 .Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany;
    2.中国农业科学院植物保护研究所, 植物病虫害生物学国家重点实验室, 北京 100193
    3 .Department of Biology/Ecology & Evolution, University of Fribourg, 1700 Fribourg, Switzerland;
  • 收稿日期:2017-03-24 接受日期:2017-06-10 出版日期:2017-12-20 发布日期:2017-12-10
  • 通讯作者: 孙燕
  • 基金资助:
    The Advance Postdoc. Mobility fellowship from the Swiss National Science Foundation (SNSF: P300PA-161014 to YS). The Swiss State Secretariat for Education, Research, and Innovation (SERI: 13.0146 to HMS). The Swiss National Science Foundation (SNSF: 31003A_166448/1 to HMS) and the EU COST Action FA1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe (SMA-RTER to HMS)’

Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia

Yan Sun1,*(), Zhongshi Zhou2, Rui Wang2, Heinz Müller-Schärer3   

  1. 1 Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany ;
    2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    3 Department of Biology/ Ecology & Evolution, University of Fribourg, 1700 Fribourg, Switzerland;
  • Received:2017-03-24 Accepted:2017-06-10 Online:2017-12-20 Published:2017-12-10
  • Contact: Sun Yan

摘要:

外来入侵植物对入侵地的生态系统与社会经济可造成严重的威胁。如何控制入侵植物对自然资源的危害, 向人类提出了极大的挑战。利用原产地的专食性天敌来控制入侵植物已被广泛证明是一种经济、可持续的生物防治手段。在全球气候变暖的背景下, 生物防治研究的关键问题是全面了解物种的潜在分布区和传播范围, 进而优化入侵植物的生物防治方案。本研究利用生物地理模型, 通过预测两种生物防治昆虫和它们的组合在东亚地区的适宜分布区, 预测豚草(Ambrosia artemisiifolia)的生物防治区域。豚草原产北美, 目前已经入侵全球多个国家和地区。20世纪末, 豚草条纹叶甲(Ophraella communa)和豚草卷蛾(Epiblema strenuana)作为豚草的生物防治昆虫从原产地引入到东亚地区。本研究旨在探讨如下问题: (1)在豚草的适宜生长分布区内, 有多少区域也同样适宜其两种天敌的生存?(2)在目前和未来的气候背景下, 有多少区域适宜豚草生长但是不适宜它的两种天敌生长?(3)在这些适宜豚草生长却不适宜两种昆虫天敌生长的区域内, 需要选择哪些特定的生物型进行投放?为此, 我们基于入侵植物和两种生物防治昆虫的全球分布记录及其分布点的重要生物气候因子, 同时模拟了入侵植物及其两种生物防治天敌在东亚地区的分布范围。排序技术被用来探索气候因子对每个物种的限制作用, 同时也用来检验豚草在北美和东亚地区的生态位重叠和相似性。结果表明, 在当前和未来的气候背景下, 相较于豚草卷蛾, 豚草条纹叶甲与豚草的地理分布范围更加吻合(当前气候: 40.3% vs. 21.6%, 未来气候: 29.8% vs. 20.3%)。气候变化可能会导致两种生物防治天敌(尤其是豚草条纹叶甲)的地理分布与豚草的地理分布的重叠区域减少(42.9% vs. 29.9%)。本研究同时提出了温度和降水等气候因子可用于为特殊区域(生物防治天敌未覆盖的豚草分布区)筛选生物防治天敌的相应株系。

关键词: 生物防治, 生物入侵, 豚草卷蛾, 生态位重叠, 豚草条纹叶甲, 物种分布

Abstract

The control of invasive alien plants (IAP) that jeopardize our ecosystems and economy constitutes a significant challenge for natural resource management. Classical biological control referring to the introduction of specialist antagonists from the native range has proven to be a highly cost-effective management tool against IAP. A critical issue in biological control research is to guide informed decision-making on the potential spread and distribution and thus impact of biological control candidates, especially under climate change. Here we propose a biogeographic modeling approach to predict the cover of the suitable area of a plant invader in East Asia (EA) by two biological control agents and their combinations. Our study system is Ambrosia artemisiifolia, native to North America and invasive worldwide, and two North American biological control agents, Ophraella communa and Epiblema strenuana that were accidentally and deliberately introduced into East Asia (EA) in the late 20th century, respectively. Specifically, we ask: (1) what percentage of the suitable A. artemisiifolia area is also suitable for the two agents in EA, and (2) which part of the suitable A. artemisiifolia area in EA is likely to remain uncovered by these two agents, both under current and future climatic scenarios; and (3) which particular biotypes would be needed to fill in the yet uncovered part of the suitable A. artemisiifolia range in East Asia? For this, we simultaneously modelled the species distributions based on worldwide occurrences and important bioclimatic variables for the target invasive plant and its two biological control agents. Ordination techniques were used to explore climatic constraints of each species and to perform niche overlap and similarity tests with A. artemisiifolia between its native North American and introduced EA range. Our results show that O. communa has a larger overlap with the geographic range of A. artemisiifolia than E. strenuana, both under current (40.3% vs. 21.6% for O. communa and E. strenuana, respectively) and future climatic scenarios (29.8% vs. 20.3% for O. communa and E. strenuana, respectively). Importantly, climate change is expected to reduce the total geographic overlap of A. artemisiifolia by the two agents combined (42.9% vs. 29.8% for current and future climate conditions, respectively), with a higher reduction by O. communa than by E. strenuana. Our analyses also identified for which abiotic conditions to select in order to develop climatically adapted strains for particular regions, where A. artemisiifolia is presently unlikely to be covered.

Key words: biological control, biological invasions, Epiblema strenuana, niche overlap, Ophraella communa, species distribution