生物多样性 ›› 2024, Vol. 32 ›› Issue (11): 24276. DOI: 10.17520/biods.2024276 cstr: 32101.14.biods.2024276
杜聪聪1,2,3(), 冯学宇1,2,3, 陈志林1,2,3,*(
)
收稿日期:
2024-06-30
接受日期:
2024-11-08
出版日期:
2024-11-20
发布日期:
2024-12-10
通讯作者:
E-mail: 基金资助:
Congcong Du1,2,3(), Xueyu Feng1,2,3, Zhilin Chen1,2,3,*(
)
Received:
2024-06-30
Accepted:
2024-11-08
Online:
2024-11-20
Published:
2024-12-10
Contact:
E-mail: Supported by:
摘要:
生物入侵是入侵生物学、生物地理学、生态学等学科研究的重要内容。为了预测和预防新的入侵, 了解入侵过程的驱动因素至关重要。与原产地相比, 入侵地物种的生态位是否发生漂移的争论一直存在。入侵物种的扩散过程十分复杂, 除了直接由原产地转移至入侵地, 还能由初次入侵地转移至其他入侵地, 这一现象被称为桥头堡效应, 普遍存在于入侵物种的扩散过程中。因此, 在评估入侵物种的生物地理学、洲际流动和气候生态位变化时, 考虑桥头堡效应至关重要。因此, 本研究以红火蚁(Solenopsis invicta)为研究对象, 探究其原产地(南美洲)、桥头堡地(美国)和二次入侵地(中国)两两之间的气候生态位重叠和漂移。 结果表明: 红火蚁南美洲种群和美国种群之间的气候生态位重叠程度较低(Schoener’s D = 0.06, Hellinger’s I = 0.20), 生态位稳定性较高(93.78%), 扩张程度较低(6.22%)。红火蚁南美洲种群和中国种群之间的气候生态位重叠程度也很低(Schoener’s D = 0.01, Hellinger’s I = 0.05), 生态位稳定性较高(97.60%), 扩张程度较低(2.40%)。但是, 在考虑桥头堡效应的情况下, 桥头堡地(美国)和二次入侵地(中国)种群之间的气候生态位重叠程度却较高(Schoener’s D = 0.34, Hellinger’s I = 0.51), 生态位稳定性较低(28.08%), 扩张程度较高(71.92%)。由此可见: 当前以美国为枢纽的贸易全球化进程在打破了长距离地理空间的限制之后, 桥头堡地种群入侵至中国后不仅能够快速适应相似的气候环境, 还在此基础上发生了明显的生态位漂移, 极可能与桥头堡地种群的适应能力密切相关, 暗示了桥头堡效应在促进红火蚁全球化入侵过程中的重要性。
杜聪聪, 冯学宇, 陈志林 (2024) 桥头堡效应中气候生态位差异的缩小促进了红火蚁的入侵. 生物多样性, 32, 24276. DOI: 10.17520/biods.2024276.
Congcong Du, Xueyu Feng, Zhilin Chen (2024) The reducing of climate niche differences in the bridgehead effect promotes the invasion of Solenopsis invicta. Biodiversity Science, 32, 24276. DOI: 10.17520/biods.2024276.
生物气候变量 Bioclimatic variables | 南美 South America | 美国 United States | 中国 China |
---|---|---|---|
平均气温日较差 Mean diurnal range (Bio2) | + | + | + |
等温性 Isothermality (Bio3) | - | + | - |
温度季节性 Temperature seasonality (Bio4) | + | - | + |
最热月最高温 Max temperature of warmest month (Bio5) | - | + | + |
最冷月最低温 Min temperature of coldest month (Bio6) | + | - | + |
最湿季平均温 Mean temperature of wettest quarter (Bio8) | + | + | + |
最干季平均温 Mean temperature of driest quarter (Bio9) | - | + | - |
最暖季平均温 Mean temperature of warmest quarter (Bio10) | - | + | + |
最冷季平均温 Mean temperature of coldest quarter (Bio11) | - | + | - |
年降水量 Annual precipitation (Bio12) | + | + | + |
最湿月降水量 Precipitation of wettest month (Bio13) | + | - | - |
最干月降水量 Precipitation of driest month (Bio14) | + | + | + |
最冷季降水量 Precipitation of coldest quarter (Bio18) | + | + | + |
表1 不同研究区域的环境变量
Table 1 Environmental variables in different study areas
生物气候变量 Bioclimatic variables | 南美 South America | 美国 United States | 中国 China |
---|---|---|---|
平均气温日较差 Mean diurnal range (Bio2) | + | + | + |
等温性 Isothermality (Bio3) | - | + | - |
温度季节性 Temperature seasonality (Bio4) | + | - | + |
最热月最高温 Max temperature of warmest month (Bio5) | - | + | + |
最冷月最低温 Min temperature of coldest month (Bio6) | + | - | + |
最湿季平均温 Mean temperature of wettest quarter (Bio8) | + | + | + |
最干季平均温 Mean temperature of driest quarter (Bio9) | - | + | - |
最暖季平均温 Mean temperature of warmest quarter (Bio10) | - | + | + |
最冷季平均温 Mean temperature of coldest quarter (Bio11) | - | + | - |
年降水量 Annual precipitation (Bio12) | + | + | + |
最湿月降水量 Precipitation of wettest month (Bio13) | + | - | - |
最干月降水量 Precipitation of driest month (Bio14) | + | + | + |
最冷季降水量 Precipitation of coldest quarter (Bio18) | + | + | + |
入侵方向 Invasion direction | 总变化距离 Schoener’s D | Hellinger距离 Hellinger’s I |
---|---|---|
美国入侵至中国 United States to China | 0.34 | 0.51 |
南美洲入侵至美国 South America to United States | 0.06 | 0.20 |
南美洲入侵至中国 South America to China | 0.01 | 0.05 |
表2 红火蚁原产地(南美洲)、桥头堡地(美国)和二次入侵地(中国)之间的气候生态位重叠
Table 2 Climatic niche overlap between native range (South America), bridgehead range (United States) and secondary invaded range (China) of Solenopsis invicta
入侵方向 Invasion direction | 总变化距离 Schoener’s D | Hellinger距离 Hellinger’s I |
---|---|---|
美国入侵至中国 United States to China | 0.34 | 0.51 |
南美洲入侵至美国 South America to United States | 0.06 | 0.20 |
南美洲入侵至中国 South America to China | 0.01 | 0.05 |
图1 红火蚁原产地(南美洲)、桥头堡地(美国)和二次入侵地(中国)之间的气候生态位动态。(a)原产地与桥头堡地间; (b)桥头堡地与二次入侵地间; (c)原产地与二次入侵地间。
Fig. 1 Climatic ecotope dynamics between native range (South America), bridgehead range (United States) and secondary invaded range (China) of Solenopsis invicta. (a) Between native range and bridgehead range; (b) Between bridgehead range and secondary invaded range; (c) Between native range and secondary invaded range.
[1] |
Ascunce MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG, Shoemaker D (2011) Global invasion history of the fire ant Solenopsis invicta. Science, 331, 1066-1068.
DOI PMID |
[2] | Bates OK, Bertelsmeier C (2021) Climatic niche shifts in introduced species. Current Biology, 31, R1252-R1266. |
[3] | Bertelsmeier C, Keller L (2018) Bridgehead effects and role of adaptive evolution in invasive populations. Trends in Ecology & Evolution, 33, 527-534. |
[4] | Bertelsmeier C, Ollier S (2021) Bridgehead effects distort global flows of alien species. Diversity and Distributions, 27, 2180-2189. |
[5] | Bertelsmeier C, Ollier S, Liebhold A, Keller L (2017) Recent human history governs global ant invasion dynamics. Nature Ecology & Evolution, 1, 0184. |
[6] | Boudjelas S, Browne M, De Poorter M, Lowe S (2000) 100 of the world’s worst invasive alien species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), Auckland, New Zealand. |
[7] | Britnell JA, Zhu YC, Kerley GIH, Shultz S (2023) Ecological marginalization is widespread and increases extinction risk in mammals. Proceedings of the National Academy of Sciences, USA, 120, e2205315120. |
[8] | Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. |
[9] | Brooks HB, Guzman-Hernandez I, Beasley DE (2023) Ant biodiversity in a temperate urban environment. Bios, 93, 117-123. |
[10] | Chen JSC, Shen CH, Lee HJ (2006) Monogynous and polygynous red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Taiwan. Environmental Entomology, 35, 167-172. |
[11] | Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution, 20, 110. |
[12] |
Colautti RI, Lau JA (2015) Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Molecular Ecology, 24, 1999-2017.
DOI PMID |
[13] | Du SJ, Guo JY, Zhao HX, Wan FH, Liu WX (2023) Research progresses on management of invasive alien species in China. Plant Protection, 49, 410-418, 440. (in Chinese with English abstract) |
[杜素洁, 郭建洋, 赵浩翔, 万方浩, 刘万学 (2023) 近十年我国入侵生物预防与监控研究. 植物保护, 49, 410-418, 440.] | |
[14] | Elton CS (1958) The Ecology of Invasions by Animals and Plants. Springer, Boston. |
[15] |
Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA, Gómez-Aparicio L, Haider S, Heger T, Kueffer C, Kühn I, Meyerson LA, Musseau C, Novoa A, Ricciardi A, Sagouis A, Schittko C, Strayer DL, Vilà M, Essl F, Hulme PE, van Kleunen M, Kumschick S, Lockwood JL, Mabey AL, McGeoch MA, Palma E, Pyšek P, Saul WC, Yannelli FA, Jeschke JM (2020) A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 29, 978-991.
DOI PMID |
[16] | Garnas RJ, Auger-Rozenberg MA, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: Eco-evolutionary and management consequences. Biological Invasions, 18, 935-952. |
[17] | Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181-233. |
[18] | Hong YH, He YH, Lin ZQ, Du YB, Chen SN, Han LX, Zhang Q, Gu SM, Tu WS, Hu SW, Yuan ZY, Liu X (2022) Complex origins indicate a potential bridgehead introduction of an emerging amphibian invader (Eleutherodactylus planirostris) in China. NeoBiota, 77, 23-37. |
[19] | Hulme M (2009) Why We Disagree about Climate Change:Understanding Controversy, Inaction and Opportunity. Cambridge University Press, Cambridge. |
[20] | King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. Journal of Animal Ecology, 75, 1370-1378. |
[21] |
Krueger-Hadfield SA, Kollars NM, Strand AE, Byers JE, Shainker SJ, Terada R, Greig TW, Hammann M, Murray DC, Weinberger F, Sotka EE (2017) Genetic identification of source and likely vector of a widespread marine invader. Ecology and Evolution, 7, 4432-4447.
DOI PMID |
[22] | Li M, Zhao HX, Xian XQ, Zhu JQ, Chen BX, Jia T, Wang R, Liu WX (2023) Geographical distribution pattern and ecological niche of Solenopsis invicta Buren in China under climate change. Diversity, 15, 607. |
[23] | Li XL (2020) Risk and countermeasures of red imported fire ant epidemic in Wuxuan County. South China Agriculture, 14(24), 15-16. (in Chinese) |
[李旭林 (2020) 武宣县农区红火蚁疫情扩散风险及应对措施探讨. 南方农业, 14(24), 15-16.] | |
[24] | Li YM, Liu X, Li XP, Petitpierre B, Guisan A (2014) Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Global Ecology and Biogeography, 23, 1094-1104. |
[25] | Lieurance D, Canavan S, Behringer DC, Kendig AE, Minteer CR, Reisinger LS, Romagosa CM, Flory SL, Lockwood JL, Anderson PJ, Baker SM, Bojko J, Bowers KE, Canavan K, Carruthers K, Daniel WM, Gordon DR, Hill JE, Howeth JG, Iannone BV III, Jennings L, Gettys LA, Kariuki EM, Kunzer JM, Laughinghouse HDI, Mandrak NE, McCann S, Morawo T, Morningstar CR, Neilson M, Petri T, Pfingsten IA, Reed RN, Walters LJ, Wanamaker C (2023) Identifying invasive species threats, pathways, and impacts to improve biosecurity. Ecosphere, 14, e4711. |
[26] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[27] | Lu YY, Zeng L, Xu YJ, Liang GW, Wang L (2019) Research progress of invasion biology and management of red imported fire ant. Journal of South China Agricultural University, 40(5), 149-160. (in Chinese with English abstract) |
[陆永跃, 曾玲, 许益镌, 梁广文, 王磊 (2019) 外来物种红火蚁入侵生物学与防控研究进展. 华南农业大学学报, 40(5), 149-160.] | |
[28] | Lü LH, He YR, Liu J, Liu XY, Vinson SB (2006) Invasion, diffusion, biology and harm of red imported fire ants. Guangdong Agricultural Sciences, (5), 3-11. (in Chinese with English abstract) |
[吕利华, 何余容, 刘杰, 刘晓燕, Vinson SB (2006) 红火蚁的入侵、扩散、生物学及其危害. 广东农业科学, (5), 3-11.] | |
[29] | McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: Species numbers, biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108. |
[30] | Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5, 199-208. |
[31] | Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC |
[32] | Ni M, Deane DC, Li SP, Wu YT, Sui XH, Xu H, Chu CJ, He FL, Fang SQ (2021) Invasion success and impacts depend on different characteristics in non-native plants. Diversity and Distributions, 27, 1194-1207. |
[33] | Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences, USA, 113, 7575-7579. |
[34] | Pearson DE, Eren Ö, Ortega YK, Hierro JL, Karakuş B, Kala S, Bullington L, Lekberg Y (2022) Combining biogeographical approaches to advance invasion ecology and methodology. Journal of Ecology, 110, 2033-2045. |
[35] | Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35, 25-55. |
[36] | Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, Pyšek P, Richardson DM, Ruiz GM, Simberloff D, Sutherland WJ, Wardle DA, Aldridge DC (2017) Invasion science: A horizon scan of emerging challenges and opportunities. Trends in Ecology & Evolution, 32, 464-474. |
[37] | Richardson DM, Pyšek P (2006) Plant invasions: Merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography: Earth and Environment, 30, 409-431. |
[38] | Rödder D, Engler JO (2011) Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20, 915-927. |
[39] |
Shackleton RT, Richardson DM, Shackleton CM, Bennett B, Crowley SL, Dehnen-Schmutz K, Estévez RA, Fischer A, Kueffer C, Kull CA, Marchante E, Novoa A, Potgieter LJ, Vaas J, Vaz AS, Larson BMH (2019) Explaining people’s perceptions of invasive alien species: A conceptual framework. Journal of Environmental Management, 229, 10-26.
DOI PMID |
[40] | Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, USA, 106, 19644-19650. |
[41] | Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. |
[42] | Srivastava V, Lafond V, Griess VC (2019) Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CABI Reviews, 2019, 1-13. |
[43] | Tschinkel WR, King JR (2017) Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Functional Ecology, 31, 955-964. |
[44] |
Tuohetahong Y, Lu RY, Guo RY, Gan F, Zhao FY, Ding S, Jin SS, Cui HF, Niu KS, Wang C, Duan WB, Ye XP, Yu XP (2024) Climate and land use/land cover changes increasing habitat overlap among endangered crested ibis and sympatric egret/heron species. Scientific Reports, 14, 20736.
DOI PMID |
[45] | Vinson SB (1997) Insect life: Invasion of the red imported fire ant (Hymenoptera: Formicidae). American Entomologist, 43, 23-39. |
[46] |
Wang HJ, Wang H, Tao ZX, Ge QS (2018) Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change. Journal of Geographical Sciences, 28, 1965-1974.
DOI |
[47] |
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310-1324.
DOI PMID |
[48] | Xu CY, Zhang WJ, Lu BR, Chen JK (2001) Progress in studies on mechanisms of biological invasion. Biodiversity Science, 9, 430-438. (in Chinese with English abstract) |
[徐承远, 张文驹, 卢宝荣, 陈家宽 (2001) 生物入侵机制研究进展. 生物多样性, 9, 430-438.] | |
[49] | Xu YJ, Lu YY, Pan ZP, Zeng L, Liang GW (2009) Heat tolerance of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae) in the mainland of China. Sociobiology, 54, 115. |
[50] | Yang XM, Sun JT, Xue XF, Li JB, Hong XY (2012) Invasion genetics of the western flower thrips in China: Evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS ONE, 7, e34567. |
[1] | 原雪姣, 张渊媛, 张衍亮, 胡璐祎, 桑卫国, 杨峥, 陈颀. 基于飞机草历史分布数据拟合的物种分布模型及其预测能力[J]. 生物多样性, 2024, 32(11): 24288-. |
[2] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[3] | 陈宏, 冼晓青, 陈宜雪, 林娜, 王苗苗, 李志鹏, 赵健. 海岛型城市红火蚁发生程度空间格局及驱动因子——以福建海坛岛为例[J]. 生物多样性, 2023, 31(5): 22501-. |
[4] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[5] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[6] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[7] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[8] | 王文婷, 杨婷婷, 金磊, 蒋家民. 未来气候变化下两种红景天植物的脆弱性[J]. 生物多样性, 2021, 29(12): 1620-1628. |
[9] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[10] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[11] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[12] | 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. |
[13] | 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[14] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[15] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn