生物多样性 ›› 2024, Vol. 32 ›› Issue (11): 24288.  DOI: 10.17520/biods.2024288  cstr: 32101.14.biods.2024288

• 生物入侵专题 • 上一篇    下一篇

基于飞机草历史分布数据拟合的物种分布模型及其预测能力

原雪姣1,2(), 张渊媛2,3,*()(), 张衍亮1(), 胡璐祎1(), 桑卫国1,*()(), 杨峥2,3(), 陈颀2,3   

  1. 1.中央民族大学生命与环境科学学院, 北京 100081
    2.北京麋鹿生态实验中心, 北京 100076
    3.北京生物多样性保护研究中心, 北京 100076
  • 收稿日期:2024-07-01 接受日期:2024-09-30 出版日期:2024-11-20 发布日期:2025-01-24
  • 通讯作者: E-mail: zyy@milupark.org.cn; swg@muc.edu.cn
  • 基金资助:
    北京市科学技术研究院财政资助项目(11000024T000002940734)

Investigating the prediction ability of the species distribution model fitted with the historical distribution records of Chromolaena odorata

Xuejiao Yuan1,2(), Yuanyuan Zhang2,3,*()(), Yanliang Zhang1(), Luyi Hu1(), Weiguo Sang1,*()(), Zheng Yang2,3(), Qi Chen2,3   

  1. 1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
    2. Beijing Milu Ecological Research Center, Beijing 100076, China
    3. Beijing Biodiversity Conservation Research Center, Beijing 100076, China.
  • Received:2024-07-01 Accepted:2024-09-30 Online:2024-11-20 Published:2025-01-24
  • Contact: E-mail: zyy@milupark.org.cn; swg@muc.edu.cn
  • Supported by:
    Financial Program of Beijing Academy of Science and Technology(11000024T000002940734)

摘要:

物种分布模型常被用于预测和管理入侵物种。然而, 这些预测工作假设物种现实生态位保持稳定, 但实际在入侵过程中是不确定的, 因此基于早期的分布数据预测后期的真实分布具有挑战性。本文基于我国重点管理的外来入侵植物——飞机草(Chromolaena odorata) 1934-2024年原产地及我国的分布记录和环境变量, 采用NicheA和COUE (centroid shift, overlap, unfilling, and expansion)框架分析其现实生态位的时空变化, 结合时间序列物种分布模型(过去4个阶段及2040时段未来气候情境)和物种扩散能力, 分析了飞机草的时空分布格局。使用优化后的MaxEnt模型, 将每一时期的模型投影至下个时期, 由于物种记录已知, 因此可检测模型的预测与飞机草在我国的实际扩张是否一致。 结果显示: (1) 1989年前飞机草在我国的现实气候生态位稳定性最高(niche stability = 1), 1989年后生态位略有扩张(1934-2009年: niche expansion (NE) = 0.08, 1934-2024年: NE = 0.09), 生态位扩张来源于台湾省的分布数据, 其余各省的现实气候生态位仍保持稳定。(2)基于过去物种记录的模型能够较好地预测出飞机草已知的分布(测试数据AUC为0.873-0.887, 10%训练数据下的遗漏率为0.131-0.152), 不同时期的物种分布模型产生了相似的潜在分布。在入侵早期阶段, 开发的物种分布模型提供了有用的见解, 但与后期阶段构建的模型相比, 也往往低估了潜在范围, 与1969年前相比, 飞机草在中国的适宜分布范围增加了71.8%-77.3%, 向北扩散至贵州南部、广西和广东北部及江西北部, 向东扩散至福建省。(3)基于未来气候变化情境和飞机草的扩散能力拟合的物种分布模型显示, 到2040年, 飞机草向北将到达重庆与四川交界处, 向东将扩散至浙江南部部分地区及江西东部。本研究可为入侵生物物种分布模型的拟合过程和飞机草在我国的管理提供参考。

关键词: 生物入侵, 飞机草, 历史分布数据, 气候生态位, 转移能力

Abstract

Aims: pecies distribution models (SDMs) are commonly employed to predict and manage invasive species. However, these prediction efforts often assume the stability of a species’ realized niche, which does not hold true during the invasion process. As a result, predicting the actual distribution of the invasive species based on early distribution data presents a challenge. Our study investigated the ability of the SDMs, fitted with the historical distribution records of Chromolaena odorata, to predict its distribution.

Methods: Based on the native and Chinese distribution records of C. odorata from 1934 to 2024, covering both its native range and its distribution in China, the temporal and spatial shifts in the species’ realized niche were analyzed using the NicheA and COUE (centroid shift, overlap, unfilling, and expansion) frameworks. A series of SDMs, encompassing both past distribution periods and a future climate scenario for 2040, were constructed to analyze the species’ spatial and temporal distribution patterns of C. odorata, incorporating its dispersal capabilities.

Results(1) The stability of the realized climatic niche of C. odorata in China exhibited the highest stability prior to 1989 (niche stability = 1), with a slight niche expanded observed after 1989 (1934-2009: niche expansion (NE) = 0.08; 1934-2024: NE = 0.09), mainly originating from Taiwan Province, while the realized climatic niche in other provinces remained stable. (2) The SDMs based on past species records accurately predicted the known distribution of C. odorata (test data AUC: 0.873-0.887, omission rate: 0.131-0.152). Different time-period models produced similar potential distributions. Compared to pre-1969 period, the potential distribution of C. odorata in China has increased by 71.8%-77.3%, with northward expansion into southern Guizhou Province, north of Guangxi and Guangdong provinces, and northern Jiangxi Province, and eastward expansion into Fujian. (3) Under future climate scenarios and considering both short- and long-distance dispersal capability, by 2040, C. odorata is expected to reach the border of Chongqing and Sichuan, and expand further into southern Zhejiang and eastern Jiangxi.

Conclusion: Over the 90 years since C. odorata invaded China, its realized climate niche has remained stable. SDMs developed during the early invasion stages provided valuable insights, although they tended to underestimate the potential distribution compared to models built in later stages. This study provides a reference for constructing SDMs and highlights priorities for managing C. odorata in China.

Key words: biological invasion, Chromolaena odorata, historical distribution data, climate niches, transferability