生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 21443. DOI: 10.17520/biods.2021443
所属专题: 生物入侵
• 研究报告: 植物多样性 • 下一篇
魏博1,2, 刘林山1, 谷昌军1,2, 于海彬3, 张镱锂1,2,*(), 张炳华1,2, 崔伯豪1,2, 宫殿清1,2, 土艳丽4
收稿日期:
2021-11-07
接受日期:
2022-03-29
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
张镱锂
作者简介:
*E-mail: zhangyl@igsnrr.ac.cn基金资助:
Bo Wei1,2, Linshan Liu1, Changjun Gu1,2, Haibin Yu3, Yili Zhang1,2,*(), Binghua Zhang1,2, Bohao Cui1,2, Dianqing Gong1,2, Yanli Tu4
Received:
2021-11-07
Accepted:
2022-03-29
Online:
2022-08-20
Published:
2022-08-31
Contact:
Yili Zhang
摘要:
明确入侵物种气候生态位的时空动态格局, 不仅有助于理解入侵物种生态位的变化趋势, 还可以使物种分布模型更真实地预测物种的扩散动态。本文使用恶性入侵植物紫茎泽兰(Ageratina adenophora)在原产地及我国的分布点和环境因子数据, 结合生态位分析及物种分布模型, 分析了紫茎泽兰入侵至我国后其气候生态位的时空变化特征、地理分布格局变化及其限制因子。结果表明: (1)紫茎泽兰入侵至我国后其气候生态位在时间和空间上虽略有扩张, 但仍保持较高的稳定性。尤其是入侵的初始阶段(1980年之前)稳定性最高(NS = 0.995), 此后其气候生态位的稳定性逐渐降低, 具体表现为该植物在中国更倾向于分布在潮湿(高最暖季降水量)、寒冷(低最干季平均温)且平均日较差低的生境。(2)过去50年里紫茎泽兰的适宜分布范围显著增加(151.77%-271.14%), 且其适宜分布区的重心在2010年之前表现出向东北(贵州西南部、四川南部)扩散的趋势, 2010年以后表现出向西南(云南北部、贵州北部)扩散的趋势。在扩散过程中, 该物种的气候生态位稳定性也表现出随着纬度的增加而逐渐降低的趋势。(3)未来气候变化情景下, 紫茎泽兰的适宜分布范围将进一步增加(111.97%), 到2040年该物种基本可以扩散至其整个潜在适宜分布区, 仅在藏东南地区有小范围的适宜生境受扩散限制无法达到。
魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽 (2022) 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势. 生物多样性, 30, 21443. DOI: 10.17520/biods.2021443.
Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodiversity Science, 30, 21443. DOI: 10.17520/biods.2021443.
1971-1980 | 1971-1990 | 1971-2000 | 1971-2010 | 1971-2020 | |
---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.995 | 0.953 | 0.909 | 0.881 | 0.859 |
生态位扩张 Niche expansion (NE) | 0.005 | 0.047 | 0.091 | 0.119 | 0.141 |
表1 不同时期入侵地与原产地紫茎泽兰气候生态位的稳定性与生态位扩张
Table 1 Climate niche stability and expansion of Ageratina adenophora in different periods compared with the native region
1971-1980 | 1971-1990 | 1971-2000 | 1971-2010 | 1971-2020 | |
---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.995 | 0.953 | 0.909 | 0.881 | 0.859 |
生态位扩张 Niche expansion (NE) | 0.005 | 0.047 | 0.091 | 0.119 | 0.141 |
云南 Yunnan | 广西 Guangxi | 贵州 Guizhou | 四川 Sichuan | 重庆 Chongqing | 西藏 Xizang | |
---|---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.959 | 0.990 | 0.902 | 0.832 | 1.000 | 1.000 |
生态位扩张 Niche expansion (NE) | 0.041 | 0.010 | 0.098 | 0.168 | 0 | 0 |
表2 与原产地相比不同入侵区域紫茎泽兰气候生态位的稳定性与生态位扩张
Table 2 Climate niche stability and expansion of Ageratina adenophora in the different invasive regions compared with the native region
云南 Yunnan | 广西 Guangxi | 贵州 Guizhou | 四川 Sichuan | 重庆 Chongqing | 西藏 Xizang | |
---|---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.959 | 0.990 | 0.902 | 0.832 | 1.000 | 1.000 |
生态位扩张 Niche expansion (NE) | 0.041 | 0.010 | 0.098 | 0.168 | 0 | 0 |
图4 不同时期紫茎泽兰在中国的潜在分布(A-E)及其重心变化(F)
Fig. 4 Potential distribution (A-E) and center of gravity (F) of Ageratina adenophora change during different periods in China
图5 影响紫茎泽兰分布的7个生物气候变量的多元环境相似度面(MESS)和最不相似变量(MoD)。 Bio 1: 年平均温度; Bio 2: 平均日较差; Bio 6: 最冷月最低温; Bio 9: 最干季平均温; Bio 12: 年平均降水量; Bio 18: 最暖季降水量; Bio 19: 最冷季降水量。
Fig. 5 Multivariate environmental similarity surface (MESS), the most dissimilar variable (MoD) of seven bioclimatic variables that affect the distribution of Ageratina adenophora. Bio 1, Annual mean temperature; Bio 2, Mean diurnal range; Bio 6, Min temperature of coldest month; Bio 9, Mean temperature of driest quarter; Bio 12, Annual precipitation; Bio 18, Precipitation of warmest quarter; Bio 19, Precipitation of coldest quarter.
[1] |
Aiello-Lammens ME, Boria RA, Aleksandar R, Bruno V, Anderson RP (2015) spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541-545.
DOI URL |
[2] | Atwater DZ, Ervine C, Barney JN (2018) Climatic niche shifts are common in introduced plants. Nature Ecology & Evolution, 2, 34-43. |
[3] | Bala S, Gupta RC (2014) Meiotic behaviour in two triploids: Erigiron annus and Eupatorium adenophorum (Asteraceae). Biolife, 2, 679-686. |
[4] |
Banerjee AK, Mukherjee A, Guo WX, Liu Y, Huang YL (2019) Spatio-temporal patterns of climatic niche dynamics of an invasive plant Mikania micrantha Kunth and its potential distribution under projected climate change. Frontiers in Ecology and Evolution, 7, 291.
DOI URL |
[5] |
Bustamante RO, Alves L, Goncalves E, Duarte M, Herrera I (2020) A classification system for predicting invasiveness using climatic niche traits and global distribution models: Application to alien plant species in Chile. NeoBiota, 63, 127-146.
DOI URL |
[6] |
Christina M, Limbada F, Atlan A (2020) Climatic niche shift of an invasive shrub (Ulex europaeus): A global scale comparison in native and introduced regions. Journal of Plant Ecology, 13, 42-50.
DOI URL |
[7] |
di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787.
DOI URL |
[8] | Datta A, Kühn I, Ahmad M, Michalski S, Auge H (2017) Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: The role of local adaptation and the importance of different life-cycle stages. PLoS ONE, 12, e0187708. |
[9] | Datta A, Schweiger O, Kühn I (2019) Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. Journal of Biogeography, 46, 1306-1315. |
[10] |
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.
DOI URL |
[11] |
Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology, 87, 1359-1367.
DOI URL |
[12] |
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K (2020) Intricate distribution patterns of six cytotypes of Allium oleraceum at a continental scale: Niche expansion and innovation followed by niche contraction with increasing ploidy level. Frontiers in Plant Science, 11, 591137.
DOI URL |
[13] |
Early R, Keith SA (2019) Geographically variable biotic interactions and implications for species ranges. Global Ecology and Biogeography, 28, 42-53.
DOI |
[14] |
Engler R, Guisan A (2009) MigClim: Predicting plant distribution and dispersal in a changing climate. Diversity and Distributions, 15, 590-601.
DOI URL |
[15] |
Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package-seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878.
DOI URL |
[16] |
Fan JY, Li HP, Yang Z, Zhu GP (2019) Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China. Biodiversity Science, 27, 140-148. (in Chinese with English abstract)
DOI URL |
[范靖宇, 李汉芃, 杨琢, 朱耿平 (2019) 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 27, 140-148.]
DOI |
|
[17] |
Gu CJ, Tu YL, Liu LS, Wei B, Zhang YL, Yu HB, Wang XL, Yangjin ZG, Zhang BH, Cui BH (2021) Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecology and Evolution, 11, 12092-12113.
DOI URL |
[18] |
Hijmans RJ (2012) Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology, 93, 679-688.
PMID |
[19] | Hu ZJ, Zhang YL, Yu HB (2015) Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS. Chinese Journal of Applied Ecology, 26, 505-511. (in Chinese with English abstract) |
[胡忠俊, 张镱锂, 于海彬 (2015) 基于MaxEnt模型和GIS的青藏高原紫花针茅分布格局模拟. 应用生态学报, 26, 505-511.] | |
[20] | Intergovernmental Panel on Climate Change IPCC (2021) Climate Change 2021:The Physical Science Basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[21] |
Ju RT, Li H, Shih CJ, Li B (2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
DOI URL |
[鞠瑞亭, 李慧, 石正人, 李博 (2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
DOI |
|
[22] |
Kass JM, Muscarella R, Galante PJ, Bohl C, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021). ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12, 1602-1608.
DOI URL |
[23] |
Kumar RP, Singh JS (2020) Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020.
DOI URL |
[24] | Li XX, Zhang QD, Zhu XZ (2017) Progress of the research on invasive plant species Eupatorium adenophorum over the last decade. Pratacultural Science, 34, 283-292. (in Chinese with English abstract) |
[李霞霞, 张钦弟, 朱珣之 (2017) 近十年入侵植物紫茎泽兰研究进展. 草业科学, 34, 283-292.] | |
[25] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[26] | Lu P, Sang WG, Ma KP (2005) Progress and prospects in research of an exotic invasive species, Eupatorium adenophorum. Acta Phytoecologica Sinica, 29, 1029-1037. (in Chinese with English abstract) |
[鲁萍, 桑卫国, 马克平 (2005) 外来入侵种紫茎泽兰研究进展与展望. 植物生态学报, 29, 1029-1037.]
DOI |
|
[27] | Ma SM, Wei B, Li XC, Luo C, Sun FF (2017) The impacts of climate change on the potential distribution of Haloxylon ammodendron. Chinese Journal of Ecology, 36, 1243-1250. (in Chinese with English abstract) |
[马松梅, 魏博, 李晓辰, 罗冲, 孙芳芳 (2017) 气候变化对梭梭植物适宜分布的影响. 生态学杂志, 36, 1243-1250.] | |
[28] |
Meier ES, Kienast F, Pearman PB, Svenning JC, Thuiller W, Araújo MB, Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography, 33, 1038-1048.
DOI URL |
[29] |
Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: Implications for biological control. Trends in Ecology & Evolution, 19, 417-422.
DOI URL |
[30] |
Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
DOI URL |
[31] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[32] |
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of Maxent. Ecography, 40, 887-893.
DOI URL |
[33] | Qiang S (1998) The history and status of the study on crofton weed (Eupatorium adenophorum Spreng.)—A worst worldwide weed. Journal of Wuhan Botanical Research, 16, 366-372. (in Chinese with English abstract) |
[强胜 (1998) 世界性恶性杂草——紫茎泽兰研究的历史及现状. 武汉植物学研究, 16, 366-372.] | |
[34] |
Quiroga RE, Premoli AC, Fernández RJ (2021) Niche dynamics in amphitropical desert disjunct plants: Seeking for ecological and species-specific influences. Global Ecology and Biogeography, 30, 370-383.
DOI URL |
[35] | R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2020-02-29) |
[36] | Su XC, Wang L, Li QL, Teng C (2014) Study of surface dry and wet conditions in Southwest China in recent 50 years. Journal of Natural Resources, 29, 104-116. (in Chinese with English abstract) |
[苏秀程, 王磊, 李奇临, 滕超 (2014) 近50a中国西南地区地表干湿状况研究. 自然资源学报, 29, 104-116.] | |
[37] |
Sun Y, Zhou ZS, Wang R, Müller-Schärer H (2017) Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia. Biodiversity Science, 25, 1285-1294. (in Chinese with English abstract)
DOI |
[孙燕, 周忠实, 王瑞, Müller-Schärer H (2017) 气候变化预计会减少东亚地区豚草的生物防治效果. 生物多样性, 25, 1285-1294.]
DOI |
|
[38] |
Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152.
DOI URL |
[39] | Tu YL, Liu LS, Liu ZQ, Yangjin ZG, Zhang LP (2018) Invasion status and countermeasures of malignant invasive plant (Ageratina adenophora) in Tibet. Tibet Science and Technology, (4), 71-75. (in Chinese) |
[土艳丽, 刘林山, 刘忠清, 央金卓嘎, 张黎鹏 (2018) 恶性入侵植物紫茎泽兰在西藏的入侵现状及应对建议. 西藏科技, ( 4), 71-75.] | |
[40] | Wang C, Lin HL, He L, Cao AC (2014) Research on responses of Eupatorium adenophorum’s potential distribution to climate change. Acta Prataculturae Sinica, 23, 20-30. (in Chinese with English abstract) |
[王翀, 林慧龙, 何兰, 曹坳程 (2014) 紫茎泽兰潜在分布对气候变化响应的研究. 草业学报, 23, 20-30.] | |
[41] | Wang R (2006) Historical Reconstruction of Invasion and Expansion and Potential Spread of Some Threatening Invasive Alien Species in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[王瑞 (2006) 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[42] |
Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397-408.
DOI URL |
[43] | Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2008) Application of ecologic niche models in explanation of niche shift of invasive alien species. Acta Ecologica Sinica, 28, 4974-4981. (in Chinese with English abstract) |
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. 应用生态位模型研究外来入侵物种生态位漂移. 生态学报, 28, 4974-4981.] | |
[44] |
Wu TW, Lu YX, Fang YJ, Xin XG, Li L, Li WP, Jie WH, Zhang J, Liu YM, Zhang L, Zhang F, Zhang YW, Wu FH, Li JL, Chu M, Wang ZZ, Shi XL, Liu XW, Wei M, Huang AN, Zhang YC, Liu XH (2019) The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP 5 to CMIP6. Geoscientific Model Development, 12, 1573-1600.
DOI URL |
[45] | Xiang JW, Zhang LP, Deng Y, She DX, Zhang Q (2021) Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 54, 46-57, 81. (in Chinese with English abstract) |
[向竣文, 张利平, 邓瑶, 佘敦先, 张琴 (2021) 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估. 武汉大学学报(工学版), 54, 46-57, 81.] | |
[46] | Xie YX, Wang CY, Liu PJ, Peng MC, Gao J, Shu GB, Yuan T (2021) Road network features and its relationship to the dispersal and spread of Ageratina adenophora in Yunnan, China. Ecological Science, 40, 17-24. (in Chinese with English abstract) |
[谢映旭, 王崇云, 刘鹏举, 彭明春, 高杰, 戍国标, 袁婷 (2021) 云南路网特征及其与紫茎泽兰传播扩散的相关性分析. 生态科学, 40, 17-24.] | |
[47] | Yang RX (2003) The badly damaging invasive plant—Eupatorium adenophorum Spreng. Bulletin of Biology, 38, 20-21. (in Chinese) |
[杨蓉西 (2003) 危害严重的外来入侵植物——紫茎泽兰. 生物学通报, 38, 20-21.] | |
[48] |
Yu HB, Zhang YL, Gao JG, Qi W (2014) Visualizing patterns of genetic landscapes and species distribution of Taxus wallichiana (Taxaceae), based on GIS and ecological niche models. Journal of Resources and Ecology, 5, 193-202.
DOI URL |
[49] | Zhang D, Liu KJ, Ma SM, Wei B, Wang CC, Yan H (2022) The suitable distribution of alpine plant Sorbus tianschanica and its environmental driving factors. Acta Ecologica Sinica, 42, 700-709. (in Chinese with English abstract) |
[张丹, 刘凯军, 马松梅, 魏博, 王春成, 闫涵 (2022) 高山植物天山花楸的适宜分布及其环境驱动因子研究. 生态学报, 42, 700-709.] | |
[50] |
Zhang JP, Zhang YL, Liu LS, Nie Y (2011) Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using maximum entropy niche-based model. Chinese Geographical Science, 21, 417-426.
DOI URL |
[51] | Zhu GP, Gutierrez Illan J, Looney C, Crowder DW (2020) Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences, USA, 117, 24646-24648. |
[52] |
Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract)
DOI URL |
[朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
DOI |
|
[53] |
Zhu GP, Qiao HJ (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24, 1189-1196. (in Chinese with English abstract)
DOI URL |
[朱耿平, 乔慧捷 (2016) MaxEnt模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24, 1189-1196.]
DOI |
|
[54] |
Zhu L, Ma KP (2010) On the niche stasis of intercontinental invasive plants. Biodiversity Science, 18, 547-558. (in Chinese with English abstract)
DOI URL |
[朱丽, 马克平 (2010) 洲际入侵植物生态位稳定性研究进展. 生物多样性, 18, 547-558.]
DOI |
[1] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[2] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[3] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[4] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[5] | 王文婷, 杨婷婷, 金磊, 蒋家民. 未来气候变化下两种红景天植物的脆弱性[J]. 生物多样性, 2021, 29(12): 1620-1628. |
[6] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[7] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[8] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[9] | 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. |
[10] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[11] | 范靖宇, 李汉芃, 杨琢, 朱耿平. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2): 140-148. |
[12] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[13] | 崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚. 基于MaxEnt模型预测白唇鹿的潜在分布区[J]. 生物多样性, 2018, 26(2): 171-176. |
[14] | 褚建民, 李毅夫, 张雷, 李斌, 高明远, 唐晓倩, 倪建伟, 许新桥. 濒危物种长柄扁桃的潜在分布与保护策略[J]. 生物多样性, 2017, 25(8): 799-806. |
[15] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn