生物多样性 ›› 2021, Vol. 29 ›› Issue (12): 1620-1628. DOI: 10.17520/biods.2021209
所属专题: 青藏高原生物多样性与生态安全
收稿日期:
2021-05-24
接受日期:
2021-08-11
出版日期:
2021-12-20
发布日期:
2021-11-12
通讯作者:
王文婷
作者简介:
*E-mail: iamwwt1983@163.com基金资助:
Wenting Wang*(), Tingting Yang, Lei Jin, Jiamin Jiang
Received:
2021-05-24
Accepted:
2021-08-11
Online:
2021-12-20
Published:
2021-11-12
Contact:
Wenting Wang
摘要:
气候变化对全球的物种多样性有深远影响, 尤其是对高山物种多样性。研究未来气候变化下物种的灭绝风险对生物多样性保护具有重要的意义。本文针对青藏高原的2种重要药用植物大花红景天(Rhodiola crenulata)和菊叶红景天(R. chrysanthemifolia), 利用气候生态位因子分析法研究了它们对气候变化的敏感性、暴露性和脆弱性, 讨论了2种“共享社会经济途径” (SSP2-45和SSP5-85)情景下的未来气候对这2个物种脆弱性的影响。同时计算了2种红景天的气候生态位的边缘性和特化性, 通过主成分分析法对其气候生态位进行了二维可视化, 并分析了它们的气候变化脆弱性与气候生态位之间的关系。结果表明, 未来气候变化情景下2种红景天在其分布区都显示出西部脆弱性高而东部脆弱性低的特征, 而脆弱性都表现为较低的横断山脉地区将成为其未来气候避难所。2种红景天在SSP5-85气候情景下的脆弱性高于SSP2-45, 资源和能源密集型社会经济途径(即SSP5-85)将会增大物种的灭绝风险。此外, 被《中国物种红色名录》评估为无危的菊叶红景天的气候变化脆弱性反而大于被评估为濒危的大花红景天。生态位因子分析结果表明大花红景天的生态位边缘性和特化性都低于菊叶红景天, 研究推断同地区不同物种的气候变化脆弱性主要由物种的气候生态位决定。
王文婷, 杨婷婷, 金磊, 蒋家民 (2021) 未来气候变化下两种红景天植物的脆弱性. 生物多样性, 29, 1620-1628. DOI: 10.17520/biods.2021209.
Wenting Wang, Tingting Yang, Lei Jin, Jiamin Jiang (2021) Vulnerability of two Rhodiola species under climate change in the future. Biodiversity Science, 29, 1620-1628. DOI: 10.17520/biods.2021209.
图1 青藏高原及其邻近地区2种红景天植物的样本分布; 图中红框内区域为研究区。青藏高原的界限数据来源于国家科技基础条件平台——国家地球系统科学数据中心(http://www.geodata.cn)。
Fig. 1 Occurrence data for two Rhodiola species studied on the Qinghai-Tibet Plateau and its adjacent areas. The area in the red box is the study area. The boundary data of the Qinghai-Tibet Plateau is downloaded from National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn).
生物气候 Bioclimate | 大花红景天 R. crenulate | 菊叶红景天 R. chrysanthemifolia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
敏感性Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | 敏感性 Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | ||||||
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
平均日温差 Mean diurnal range | 2.4 | 0.24 | 0.33 | 1.7 | 1.79 | 2.43 | 0.22 | 0.3 | 1.7 | 1.8 | |
等温性 Isothermality | 3.6 | 0.17 | 0.23 | 2 | 2.1 | 4.78 | 0.17 | 0.2 | 2.4 | 2.4 | |
最暖季平均气温 Mean temperature of warmest quarter | 6.2 | 0.28 | 0.42 | 2.8 | 2.97 | 11.6 | 0.28 | 0.4 | 3.9 | 4 | |
季节性降水量 Precipitation seasonality | 2 | 0.09 | 0.12 | 1.5 | 1.5 | 2.65 | 0.07 | 0.1 | 1.7 | 1.7 | |
最暖季降水量 Precipitation of warmest quarter | 13 | 0.08 | 0.12 | 3.7 | 3.79 | 17.1 | 0.08 | 0.1 | 4.3 | 4.4 | |
最冷季降水量 Precipitation of coldest quarter | 1.5 | 0.03 | 0.04 | 1.3 | 1.26 | 2.55 | 0.02 | 0 | 1.6 | 1.6 |
表1 大花红景天和菊叶红景天的敏感性因子以及不同“共享社会经济途径” (SSPs)情景下的偏离性因子和脆弱性因子。粗体表示每列中2个幅度最大的系数。
Table 1 Sensitivity factors of Rhodiola crenulata and R. chrysanthemifolia, as well as departure factors and vulnerability factors under different shared socioeconomic pathways (SSPs). The two widest coefficients in each column are shown in bold.
生物气候 Bioclimate | 大花红景天 R. crenulate | 菊叶红景天 R. chrysanthemifolia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
敏感性Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | 敏感性 Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | ||||||
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
平均日温差 Mean diurnal range | 2.4 | 0.24 | 0.33 | 1.7 | 1.79 | 2.43 | 0.22 | 0.3 | 1.7 | 1.8 | |
等温性 Isothermality | 3.6 | 0.17 | 0.23 | 2 | 2.1 | 4.78 | 0.17 | 0.2 | 2.4 | 2.4 | |
最暖季平均气温 Mean temperature of warmest quarter | 6.2 | 0.28 | 0.42 | 2.8 | 2.97 | 11.6 | 0.28 | 0.4 | 3.9 | 4 | |
季节性降水量 Precipitation seasonality | 2 | 0.09 | 0.12 | 1.5 | 1.5 | 2.65 | 0.07 | 0.1 | 1.7 | 1.7 | |
最暖季降水量 Precipitation of warmest quarter | 13 | 0.08 | 0.12 | 3.7 | 3.79 | 17.1 | 0.08 | 0.1 | 4.3 | 4.4 | |
最冷季降水量 Precipitation of coldest quarter | 1.5 | 0.03 | 0.04 | 1.3 | 1.26 | 2.55 | 0.02 | 0 | 1.6 | 1.6 |
物种 Species | 边缘性 Marginality | 特化性 Specialization | 敏感性 Sensitivity | 暴露性 Exposure | 脆弱性 Vulnerability | ||
---|---|---|---|---|---|---|---|
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
大花红景天 R. crenulate | 0.84 | 1.34 | 2.18 | 0.42 | 0.61 | 1.47 | 1.45 |
菊叶红景天 R. chrysanthemifolia | 1.01 | 1.60 | 2.62 | 0.41 | 0.58 | 1.61 | 1.63 |
表2 大花红景天和菊叶红景天的特化性、边缘性和敏感性的总体指标以及不同“共享社会经济途径” (SSPs)情景下的暴露性和脆弱性的总体指标
Table 2 Total indices of specialization, marginality and sensitivity of Rhodiola crenulata and R. chrysanthemifolia as well as total indices of exposure and vulnerability under different shared socioeconomic pathways (SSPs) scenarios
物种 Species | 边缘性 Marginality | 特化性 Specialization | 敏感性 Sensitivity | 暴露性 Exposure | 脆弱性 Vulnerability | ||
---|---|---|---|---|---|---|---|
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
大花红景天 R. crenulate | 0.84 | 1.34 | 2.18 | 0.42 | 0.61 | 1.47 | 1.45 |
菊叶红景天 R. chrysanthemifolia | 1.01 | 1.60 | 2.62 | 0.41 | 0.58 | 1.61 | 1.63 |
图2 青藏高原及其邻近地区2种红景天植物的敏感性。图中黑点代表2种红景天的样本记录点的分布, 图例上的红绿色分界点代表物种空间敏感性的中位数。
Fig. 2 Sensitivity of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas. The black dots in figures represent sample distributions of two Rhodiola species, the demarcation point between red and green in the legend represents the median spatial sensitivity of the species.
图3 未来气候变化情景下(“共享社会经济途径” SSP2-45)青藏高原及其邻近地区大花红景天(a)和菊叶红景天(b)的暴露性; 以及2种“共享社会经济途径” (SSPs)情景下(SSP2-45和SSP5-85)大花红景天(c)和菊叶红景天(d)的暴露性增量。图中黑点代表2种红景天的样本记录点的分布, (a)和(b)中图例上的红绿色分界点代表物种空间暴露性的中位数。
Fig. 3 Exposure of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas under future climate change (shared socioeconomic pathway, SSP2-45): (a) R. crenulata and (b) R. chrysanthemifolia; and the increment of exposure of two Rhodiola species under two SSPs scenarios (SSP2-45 and SSP5-85): (c) R. crenulata and (d) R. chrysanthemifolia. The black dots in figures represent sample distributions of two Rhodiola species. The demarcation point between red and green in the legend of (a) and (b) represent the median spatial exposure of the species.
图4 未来气候变化情景下(“共享社会经济途径” SSP2-45)青藏高原及其邻近地区的大花红景天(a)和菊叶红景天(b)的脆弱性; 以及2种“共享社会经济途径” (SSPs)情景下(SSP2-45和SSP5-85)大花红景天(c)和菊叶红景天(d)的脆弱性增量。图中黑点代表2种红景天的样本记录点的分布, (a)和(b)中图例上的红紫色分界点代表物种空间脆弱性的中位数。
Fig. 4 Vulnerability of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas under future climate change (shared socioeconomic pathway, SSP2-45): (a) R. crenulata and (b) R. chrysanthemifolia; and the increment of vulnerability of two Rhodiola species under two shared SSPs scenarios (SSP2-45 and SSP5-85): (c) R. crenulata and (d) R. chrysanthemifolia. The black dots in figures represent sample distributions of two Rhodiola species. The demarcation point between red and purple in the legend of (a) and (b) represent the median spatial vulnerability of the species.
图5 青藏高原及其邻近地区大花红景天和菊叶红景天的气候生态位比较。红色和绿色分别表示大花红景天和菊叶红景天的气候生态位; 蓝色表示2个物种气候生态位的重叠; 红线包围区域表示研究区的气候生态位。
Fig. 5 Comparison of the climatic niches of Rhodiola crenulata and R. chrysanthemifolia distribution on the Qinghai-Tibet Plateau and its adjacent areas. Red showing the climatic niches of R. crenulata and green showing the climatic niches of R. chrysanthemifolia; the overlap of the climatic niches between the two species showed in blue. The area enclosed by the red line indicates the climatic niche of the study area.
[1] |
Akçakaya HR, Butchart SHM, Watson JEM, Pearson RG (2014) Preventing species extinctions resulting from climate change. Nature Climate Change, 4, 1048-1049.
DOI URL |
[2] |
Alkemade R, Bakkenes M, Eickhout B (2011) Towards a general relationship between climate change and biodiversity: An example for plant species in Europe. Regional Environmental Change, 11, 143-150.
DOI URL |
[3] |
Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science, 313, 1396-1397.
DOI URL |
[4] |
Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, Derous S, Holm P, Horton T, van Ierland E, Marboe AH, Starkey DJ, Townsend M, Zarzycki T (2007) Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Marine Pollution Bulletin, 54, 253-265.
PMID |
[5] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[6] | Chen WQ, Ruan YZ, Fu SX, Fu KJ (1984) Flora Reipublicae Popularis Sinicae, vol.34. Science Press, Beijing. (in Chinese) |
[ 陈伟球, 阮云珍, 傅书遐, 傅坤俊 (1984) 中国植物志(第34卷). 科学出版社, 北京.] | |
[7] |
Christmas MJ, Breed MF, Lowe AJ (2016) Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 17, 305-320.
DOI URL |
[8] | Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing. (in Chinese) |
国家药典委员会 (2015) 中华人民共和国药典. 中国医药科技出版社, 北京.] | |
[9] |
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258-261.
DOI PMID |
[10] |
Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: Biodiversity conservation in a changing climate. Science, 332, 53-58.
DOI URL |
[11] |
Erasmus BFN, van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Global Change Biology, 8, 679- 693.
DOI URL |
[12] |
Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE, Olson VA, Ridgely RS, Rasmussen PC, Ding TS, Bennett PM, Blackburn TM, Gaston KJ, Gittleman JL, Owens IPF (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96.
DOI URL |
[13] | Health Bureau of Tibet, Qinghai, Sichuan, Gansu, Yunnan, Xinjiang (1979) Tibetan Medicine Standard. Qinghai People’s Publishing House Press, Xining. (in Chinese) |
西藏、青海、四川、甘肃、云南、新疆卫生局 (1979) 藏药标准. 青海人民出版社, 西宁.] | |
[14] |
Herrmann JD, Carlo TA, Brudvig LA, Damschen EI, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2016) Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 97, 1274-1282.
PMID |
[15] |
Hirzel A, Hausser J, Chessel D, Perrin N (2002) Ecological- niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
DOI URL |
[16] |
Hughes C (2011) Changes and challenges in 20 years of research into the development of executive functions. Infant and Child Development, 20, 251-271.
DOI URL |
[17] | Intergovernmental Panel on Climate Change IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[18] |
Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369.
DOI URL |
[19] |
Leclerc C, Courchamp F, Bellard C (2020) Future climate change vulnerability of endemic island mammals. Nature Communications, 11, 4943-4952.
DOI URL |
[20] |
Liu CR, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence- absence data. Ecography, 34, 232-243.
DOI URL |
[21] | Liu MC, Zhang DJ (2013) The progress of Rhodiola rosea’s pharmacological effects research. Asia-Pacific Traditional Medicine, 9(6), 65-69. (in Chinese with English abstract) |
[ 刘明成, 张得钧 (2013) 红景天药理作用研究进展. 亚太传统医药, 9(6), 65-69.] | |
[22] |
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O'Sullivan JM, Prise KM, Hirst DG, Currell FJ (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1, 18.
DOI URL |
[23] |
Morgan JW, Venn SE (2017) Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecology, 218, 813-819.
DOI URL |
[24] | Occdownload GBIF.org (2021) GBIF Occurrence Download https://www.gbif.org/occurrence/download/0326595-200613084148143 . (accessed on 2021-07-19) |
[25] |
Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Climate Change, 5, 215-224.
DOI URL |
[26] |
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
DOI URL |
[27] |
Quintero I, Wiens JJ (2013) Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16, 1095-1103.
DOI PMID |
[28] | Rinnan DS (2020) CENFA: Climate and ecological niche factor analysis. R Package Version 1.0.0. https://CRAN.R- project.org/package=CENFA . (accessed on 2020-10-16) |
[29] |
Rinnan DS, Lawler J (2019) Climate-niche factor analysis: A spatial approach to quantifying species vulnerability to climate change. Ecography, 42, 1494-1503.
DOI |
[30] |
Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology, 87, 1611-1615.
PMID |
[31] | Su JS, Zhao J, Jing GH, Wei L, Liu J, Cheng JM, Zhang JE (2017) Root pattern of Stipa plants in semiarid grassland after long-term grazing exclusion. Acta Ecologica Sinica, 37, 6571-6580. (in Chinese with English abstract) |
[ 苏纪帅, 赵洁, 井光花, 魏琳, 刘建, 程积民, 张金娥 (2017) 半干旱草地长期封育进程中针茅植物根系格局变化特征. 生态学报, 37, 6571-6580.] | |
[32] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature, 427, 145-148.
DOI URL |
[33] |
Urban MC (2015) Accelerating extinction risk from climate change. Science, 348, 571-573.
DOI PMID |
[34] |
Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Kapás RE, De Frenne P (2017) Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 32, 579-593.
DOI URL |
[35] | Wang Q, Ruan X, Li HD, Wang GJ (2007) Research status, questions and strategies of rare medicinal plant Rhodiola L. Journal of Natural Resources, 22, 880-889. (in Chinese with English abstract) |
[ 王强, 阮晓, 李荷迪, 王国军 (2007) 珍稀药用资源植物红景天研究现状、问题与对策. 自然资源学报, 22, 880-889.] | |
[36] | Wang S, Xie Y (2004) China Species Red List (vol. 1). Higher Education Press, Beijing. (in Chinese) |
[ 汪松, 解焱 (2004) 中国物种红色名录 (第一卷). 高等教育出版社, 北京.] | |
[37] |
Wang WT, Guo WY, Jarvie S, Svenning JC (2021) The fate of Meconopsis species in the Tibet-Himalayan region under future climate change. Ecology and Evolution, 11, 887-899.
DOI URL |
[38] |
Welter S, Brunner K, Hofstraat JW, De Cola L (2003) Electroluminescent device with reversible switching between red and green emission. Nature, 421, 54-57.
DOI URL |
[39] | Wen J, Lü XM, Hong DX, Xie CX, Zhang J, Zhang Y (2016) Potential distribution of Rhodiola crenulata in Tibetan Plateau based on MaxEnt model. China Journal of Chinese Materia Medica, 41, 3931-3936. (in Chinese with English abstract) |
[ 文检, 吕秀梅, 洪道鑫, 谢彩香, 张静, 张艺 (2016) 基于MaxEnt模型的青藏高原大花红景天生态适宜性分析. 中国中药杂志, 41, 3931-3936.] | |
[40] |
Wheatley CJ, Beale CM, Bradbury RB, Pearce-Higgins JW, Critchlow R, Thomas CD (2017) Climate change vulnerability for species-Assessing the assessments. Global Change Biology, 23, 3704-3715.
DOI URL |
[41] |
Zhang J, Nielsen SE, Chen YH, Georges D, Qin YC, Wang SS, Svenning JC, Thuiller W (2017) Extinction risk of North American seed plants elevated by climate and land-use change. Journal of Applied Ecology, 54, 303-312.
DOI URL |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[4] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[5] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[6] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[7] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[8] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[9] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[10] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[11] | 刘艳艳, 刘畅, 魏晓新. 我国及周边地区松属白松亚组系统学研究进展和保护现状[J]. 生物多样性, 2022, 30(2): 21344-. |
[12] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[13] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[14] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[15] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn