生物多样性 ›› 2020, Vol. 28 ›› Issue (12): 1523-1532. DOI: 10.17520/biods.2020352
所属专题: 青藏高原生物多样性与生态安全
收稿日期:
2020-09-01
接受日期:
2020-12-15
出版日期:
2020-12-20
发布日期:
2020-12-28
通讯作者:
邓建明
作者简介:
: E-mail: dengjm@lzu.edu.cn基金资助:
Yuan Sun, Weigang Hu, Shuran Yao, Ying Sun, Jianming Deng*()
Received:
2020-09-01
Accepted:
2020-12-15
Online:
2020-12-20
Published:
2020-12-28
Contact:
Jianming Deng
摘要:
生物多样性的大尺度空间分布格局及其形成机制一直是生态学和生物地理学的核心内容。黄河流域是我国重要的生态屏障, 明确该区域动植物多样性分布格局及其影响因素, 对我国黄河流域生态保护和高质量发展具有重要意义。本研究通过收集黄河流域被子植物和陆栖脊椎动物分布数据, 结合气候、环境异质性和人类活动等信息, 探讨了黄河流域被子植物和陆栖脊椎动物物种丰富度格局及其主要影响因素。结果表明, 黄河流域被子植物和陆栖脊椎动物物种丰富度在区域尺度具有相似的分布格局: 南部山地动植物物种丰富度最高, 而东部高寒区和北部干旱区物种丰富度最低。回归树模型表明, 冠层高度范围和净初级生产力范围分别是黄河流域被子植物和陆栖脊椎动物物种丰富度最重要的预测因子; 当移除空间自相关影响后, 环境异质性和气候因子依然对区域尺度的动植物物种丰富度具有较高且相似的解释度。表明环境异质性和气候共同决定了黄河流域被子植物和陆栖脊椎动物物种丰富度格局, 而人类使用土地面积并不是影响黄河流域动植物物种丰富度格局的主要因子。因此, 在未来的研究中若针对不同区域筛选出更精准的环境驱动因子或选用更多不同类别的环境异质性因子进行分析, 将有助于更深入理解物种多样性格局的成因。
孙远, 胡维刚, 姚树冉, 孙颖, 邓建明 (2020) 黄河流域被子植物和陆栖脊椎动物丰富度格局及其影响因子. 生物多样性, 28, 1523-1532. DOI: 10.17520/biods.2020352.
Yuan Sun, Weigang Hu, Shuran Yao, Ying Sun, Jianming Deng (2020) Geographic patterns and environmental determinants of angiosperm and terrestrial vertebrate species richness in the Yellow River basin. Biodiversity Science, 28, 1523-1532. DOI: 10.17520/biods.2020352.
最小值 Min. | 最大值 Max. | 平均值 Mean | |
---|---|---|---|
物种丰富度 Species richness | |||
被子植物 Angiosperms | 279 | 5,076 | 1,301 |
陆栖脊椎动物 Terrestrial vertebrates | 81 | 528 | 232 |
环境因子 Environmental variables | |||
人类使用土地面积 Human used areas (HUA, km2) | 0.00 | 9,967.42 | 2,337.76 |
年均温 Mean annual temperature (TEM, ℃) | ?7.50 | 14.53 | 5.04 |
温度季节性 Temperature seasonality (TSN, ℃) | 6.01 | 13.63 | 9.70 |
年降水量 Annual precipitation (PRE, mm) | 36.04 | 979.78 | 404.99 |
降水季节性 Precipitation seasonality (PSN, mm) | 68.62 | 117.98 | 95.84 |
净初级生产力 Net primary productivity (NPP, gC/m2) | 0.22 | 674.55 | 207.16 |
温度范围 Temperature range (TEM.ra, ℃) | 0.60 | 23.70 | 7.61 |
降水范围 Precipitation range (PRE.ra, mm) | 17.00 | 523.00 | 174.28 |
海拔范围 Elevation range (ELE.ra, m) | 33.00 | 5,048.00 | 1,356.22 |
净初级生产力范围 Net primary productivity range (NPP.ra, gC/m2) | 1.20 | 1,274.60 | 397.63 |
冠层高度范围 Canopy height range (HEI.ra, m) | 3.00 | 43.00 | 24.05 |
表1 黄河流域被子植物和陆栖脊椎动物丰富度以及各环境变量的基本统计信息
Table 1 Descriptive statistics of species richness and environmental variables in the Yellow River basin
最小值 Min. | 最大值 Max. | 平均值 Mean | |
---|---|---|---|
物种丰富度 Species richness | |||
被子植物 Angiosperms | 279 | 5,076 | 1,301 |
陆栖脊椎动物 Terrestrial vertebrates | 81 | 528 | 232 |
环境因子 Environmental variables | |||
人类使用土地面积 Human used areas (HUA, km2) | 0.00 | 9,967.42 | 2,337.76 |
年均温 Mean annual temperature (TEM, ℃) | ?7.50 | 14.53 | 5.04 |
温度季节性 Temperature seasonality (TSN, ℃) | 6.01 | 13.63 | 9.70 |
年降水量 Annual precipitation (PRE, mm) | 36.04 | 979.78 | 404.99 |
降水季节性 Precipitation seasonality (PSN, mm) | 68.62 | 117.98 | 95.84 |
净初级生产力 Net primary productivity (NPP, gC/m2) | 0.22 | 674.55 | 207.16 |
温度范围 Temperature range (TEM.ra, ℃) | 0.60 | 23.70 | 7.61 |
降水范围 Precipitation range (PRE.ra, mm) | 17.00 | 523.00 | 174.28 |
海拔范围 Elevation range (ELE.ra, m) | 33.00 | 5,048.00 | 1,356.22 |
净初级生产力范围 Net primary productivity range (NPP.ra, gC/m2) | 1.20 | 1,274.60 | 397.63 |
冠层高度范围 Canopy height range (HEI.ra, m) | 3.00 | 43.00 | 24.05 |
图2 黄河流域环境变量分布图以及被子植物和陆栖脊椎动物物种丰富度的空间格局
Fig. 2 Distribution of environmental variables and spatial pattern of species richness of angiosperms and terrestrial vertebrates in the Yellow River basin
图3 黄河流域被子植物(a)和陆栖脊椎动物(b)物种丰富度的回归树分析。 HEI.ra: 冠层高度范围; NPP.ra: 净初级生产力范围; TSN: 温度季节性; ELE.ra: 海拔范围; PRE: 年降水量; HUA: 人类使用土地面积; PSN: 降水季节性。
Fig. 3 Regression tree analysis of species richness of angiosperms (a) and terrestrial vertebrates (b) HEI.ra, Vegetation height range; NPP.ra, Net primary productivity range; TSN, Temperature seasonality; ELE.ra, Elevation range; PRE, Mean annual precipitation; HUA, Human used areas; PSN, Precipitation seasonality.
预测因子 Predictor | 被子植物 Angiosperms | 陆栖脊椎动物 Terrestrial vertebrates | ||
---|---|---|---|---|
coefOLS | coefSAR | coefOLS | coefSAR | |
人类使用土地面积 (HUA) | ? | ? | ? | ? |
年均温 (TEM) | ? | ? | 0.05** | 0.09*** |
温度季节性 (TSN) | ?0.09** | ?0.13* | 0.07* | ?0.14*** |
年降水量 (PRE) | ? | 0.11*** | 0.04 | |
降水季节性 (PSN) | ?0.17*** | ?0.13** | ?0.04* | 0 |
净初级生产力 (NPP) | ? | ? | ? | ? |
降水范围 (PRE.ra) | 0.05 | 0.07* | 0.02 | 0.02*** |
海拔范围 (ELE.ra) | 0.15*** | 0.11** | ? | ? |
净初级生产力范围 (NPP.ra) | 0.09* | 0.03 | 0.17*** | 0.01 |
冠层高度范围 (HEI.ra) | 0.07 | 0.12** | ? | 0.04 |
被子植物丰富度(Plant) | ? | ? | 0.11** | 0.04* |
AIC | 28.58 | ?26.79 | ?200.12 | ?515.81 |
R2 | 0.79 | 0.62 | 0.87 | 0.69 |
表2 被子植物和陆栖脊椎动物物种丰富度的多元线性回归和空间自回归(SAR)模型分析结果
Table 2 Results of ordinary least squares (OLS) and simultaneous autoregressive (SAR) models for species richness of angiosperms and terrestrial vertebrates
预测因子 Predictor | 被子植物 Angiosperms | 陆栖脊椎动物 Terrestrial vertebrates | ||
---|---|---|---|---|
coefOLS | coefSAR | coefOLS | coefSAR | |
人类使用土地面积 (HUA) | ? | ? | ? | ? |
年均温 (TEM) | ? | ? | 0.05** | 0.09*** |
温度季节性 (TSN) | ?0.09** | ?0.13* | 0.07* | ?0.14*** |
年降水量 (PRE) | ? | 0.11*** | 0.04 | |
降水季节性 (PSN) | ?0.17*** | ?0.13** | ?0.04* | 0 |
净初级生产力 (NPP) | ? | ? | ? | ? |
降水范围 (PRE.ra) | 0.05 | 0.07* | 0.02 | 0.02*** |
海拔范围 (ELE.ra) | 0.15*** | 0.11** | ? | ? |
净初级生产力范围 (NPP.ra) | 0.09* | 0.03 | 0.17*** | 0.01 |
冠层高度范围 (HEI.ra) | 0.07 | 0.12** | ? | 0.04 |
被子植物丰富度(Plant) | ? | ? | 0.11** | 0.04* |
AIC | 28.58 | ?26.79 | ?200.12 | ?515.81 |
R2 | 0.79 | 0.62 | 0.87 | 0.69 |
[1] | Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U ( 2007) Ecological and land use studies along elevational gradients. Mountain Research and Development, 27, 58-65. |
[2] | Burnhan KP, Anderson DR ( 2002) Model selection and multi-model inference: A practical information-theoretic approach. Technometrics, 45, 181-181. |
[3] | Currie DJ ( 1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. |
[4] | De’Ath G ( 2002) Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology, 83, 1105-1117. |
[5] | De’Ath G, Fabricius KE ( 2000) Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81, 3178-3192. |
[6] | Dong XR, Zhang H, Zhang MG ( 2019) Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau. Biodiversity Science, 27, 1269-1278. (in Chinese with English abstract) |
[ 董雪蕊, 张红, 张明罡 ( 2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27, 1269‒1278.] | |
[7] | Fang JY, Shen ZH, Tang ZY, Wang ZH ( 2004) The protocol for the survey plan for plant species diversity of China’s mountains. Biodiversity Science, 12, 5-9. (in Chinese with English abstract) |
[ 方精云, 沈泽昊, 唐志尧, 王志恒 ( 2004) “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5‒9.] | |
[8] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[9] | Hughes C, Eastwood R ( 2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, USA, 103, 10334-10339. |
[10] | Jenkins CN, Pimm SL, Joppa LN ( 2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, USA, 110, E2602-E2610. |
[11] | Jiang ZG, Li LL, Luo ZH, Tang SH, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Feng ZJ, Cai L, Zang CX, Zeng Y, Meng ZB, Ping XG, Fang HX ( 2016) Evaluating the status of China’s mammals and analyzing their causes of endangerment through the red list assessment. Biodiversity Science, 24, 552-567. (in Chinese with English abstract) |
[ 蒋志刚, 李立立, 罗振华, 汤宋华, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 冯祚建, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 平晓鸽, 方红霞 ( 2016) 通过红色名录评估研究中国哺乳动物受威胁现状及其原因. 生物多样性, 24, 552‒567.] | |
[12] | Kerr JT, Packer L ( 1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254. |
[13] | Kissling WD, Carl G ( 2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59-71. |
[14] | Kreft H, Jetz W ( 2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930. |
[15] | Legendre P, Legendre L ( 1998) Numerical Ecology. Elsevier, Amsterdam. |
[16] |
Li LP, Wang ZH, Zerbe S, Abdusalih N, Tang ZY, Ma M, Yin LK, Mohammat A, Han WX, Fang JY ( 2013) Species richness patterns and water-energy dynamics in the drylands of northwest China. PLoS ONE, 8, e66450.
URL PMID |
[17] | Lin X, Wang ZH, Tang ZY, Zhao SQ, Fang JY ( 2009) Geographic patterns and environmental correlates of terrestrial mammal species richness in China. Biodiversity Science, 17, 652-663. (in Chinese with English abstract) |
[ 林鑫, 王志恒, 唐志尧, 赵淑清, 方精云 ( 2009) 中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系. 生物多样性, 17, 652‒663.] | |
[18] |
Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD ( 2018) Evolutionary history of the angiosperm flora of China. Nature, 554, 234-238.
DOI URL PMID |
[19] |
Luck GW ( 2007) A review of the relationships between human population density and biodiversity. Biological Reviews, 82, 607-645.
URL PMID |
[20] |
Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC ( 2013) Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31, 129-144.
DOI URL |
[21] |
Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, de Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Shai MR, Novosolov M, Yuan P, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A ( 2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
DOI URL PMID |
[22] | O’Brien EM, Field R, Whittaker RJ ( 2000) Climatic gradients in woody plant (tree and shrub) diversity: Water-energy dynamics, residual variation, and topography. Oikos, 89, 588-600. |
[23] | O’Brien EM ( 1998) Water-energy dynamics, climate, and prediction of woody plant species richness: An interim general model. Journal of Biogeography, 25, 379-398. |
[24] | Qian H ( 2013) Environmental determinants of woody plant diversity at a regional scale in China. PLoS ONE, 8, e75832. |
[25] | R Core Team ( 2019) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. ( accessed on 2019-09-01) |
[26] | Ricklefs RE ( 1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167-171. |
[27] | Sarr DA, Hibbs DE, Huston MA ( 2005) A hierarchical perspective of plant diversity. Quarterly Review of Biology, 80, 187-212. |
[28] | Shmida A, Wilson MV ( 1985) Biological determinants of species-diversity. Journal of Biogeography, 12, 1-20. |
[29] | Simard M, Pinto N, Fisher JB, Baccini A ( 2011) Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116, 1-12. |
[30] | Stein A, Gerstner K, Kreft H ( 2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880. |
[31] |
Stein A, Kreft H ( 2015) Terminology and quantification of environmental heterogeneity in species-richness research. Biological Reviews, 90, 815-836.
URL PMID |
[32] | Svenning JC, Skov F ( 2007) Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology and Biogeography, 16, 234-245. |
[33] |
Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL, Burgess ND, Butchart SHM, Leadley PW, Regan EC, Alkemade R, Baumung R, Bellard C, Bouwman L, Bowles-Newark NJ, Chenery AM, Cheung WWL, Christensen V, Cooper HD, Crowther AR, Dixon MJR, Galli A, Gaveau V, Gregory RD, Gutierrez NL, Hirsch TL, Höft R, Januchowski-Hartley SR, Karmann M, Krug CB, Leverington FJ, Loh J, Lojenga RK, Malsch K, Marques A, Morgan DHW, Mumby PJ, Newbold T, Noonan-Mooney K, Pagad SN, Parks BC, Pereira HM, Robertson T, Rondinini C, Santini L, Scharlemann JPW, Schindler S, Sumaila UR, Teh LSL, van Kolck J, Visconti P, Ye YM ( 2014) A mid-term analysis of progress toward international biodiversity targets. Science, 346, 241-244.
DOI URL PMID |
[34] | Vitousek PM, Mooney HA, Lubchenco J, Melillo JM ( 1997) Human domination of Earth’s ecosystems. Science, 277, 494-499. |
[35] | Wang ZH, Fang JY, Tang ZY, Lin X ( 2011) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132. |
[36] | Xing YW, Ree RH ( 2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, E3444-E3451. |
[37] | Xu C, Huang ZYX, Chi T, Chen BJW, Zhang MJ, Liu MS ( 2014) Can local landscape attributes explain species richness patterns at macroecological scales? Global Ecology and Biogeography, 23, 436‒445. |
[38] | Xu HG, Cao MC, Wu Y, Cai L, Cao Y, Wu J, Lei JC, Le ZF, Ding H, Cui P ( 2016) Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales. Scientific Reports, 6, 21988. |
[39] | Zhang ZD, Yu YW, Hua LM, Pu X, Wang HC, Liang TG ( 2014) Analysis of the distribution pattern of wild vascular plant diversity in Gansu Province, China. Acta Prataculturae Sinica, 23, 22-30. (in Chinese with English abstract) |
[ 张志达, 于应文, 花立民, 蒲训, 王虎成, 梁天刚 ( 2014) 甘肃省野生维管植物多样性分布格局分析. 草业学报, 23, 22‒30.] | |
[40] | Zhao SQ, Fang JY, Peng CH, Tang ZY ( 2006) Relationships between species richness of vascular plants and terrestrial vertebrates in China: Analyses based on data of nature reserves. Diversity and Distributions, 12, 189-194. |
[1] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[2] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[3] | 陈瑶琪, 郭晶晶, 蔡国俊, 葛依立, 廖宇, 董正, 符辉. 近七十年(1954-2021)长江中下游湖泊沉水植物群落多样性演变特征[J]. 生物多样性, 2024, 32(3): 23319-. |
[4] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[5] | 张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露. 被子植物花粉颜色多样性及应用研究进展[J]. 生物多样性, 2024, 32(1): 23346-. |
[6] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[7] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[8] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
[9] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[10] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[11] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[12] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[13] | 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化[J]. 生物多样性, 2023, 31(12): 23262-. |
[14] | 王健铭, 雷训, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 中国温带荒漠植物群落生态特异性格局及其影响因素[J]. 生物多样性, 2023, 31(10): 23144-. |
[15] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn