生物多样性 ›› 2024, Vol. 32 ›› Issue (3): 23491. DOI: 10.17520/biods.2023491 cstr: 32101.14.biods.2023491
• 研究报告: 动物多样性 • 上一篇
曹可欣1, 王敬雯1, 郑国1, 武鹏峰1, 李英滨2, 崔淑艳1,*()
收稿日期:
2023-12-26
接受日期:
2024-02-18
出版日期:
2024-03-20
发布日期:
2024-03-06
通讯作者:
*E-mail: cui.shu.yan@163.com
基金资助:
Kexin Cao1, Jingwen Wang1, Guo Zheng1, Pengfeng Wu1, Yingbin Li2, Shuyan Cui1,*()
Received:
2023-12-26
Accepted:
2024-02-18
Online:
2024-03-20
Published:
2024-03-06
Contact:
*E-mail: cui.shu.yan@163.com
摘要:
在全球气候变化的影响下, 干旱和半干旱地区的降水格局呈现出降雨强度增加、降雨频率减少但降雨总量不变的趋势。大气氮沉降作为另一个全球气候变化的重要因子, 沉降速率逐年加剧, 显著影响生态功能及过程。线虫是陆地生态系统中最主要的土壤生物, 参与多种地下生态过程。线虫群落的多样性尤其是功能、系统发育多样性如何对降水格局的改变做出响应, 以及氮沉降如何调节这些响应, 目前仍不清楚。本研究利用中国科学院植物研究所多伦恢复生态学试验研究站长期模拟降水格局改变及氮沉降添加试验平台, 开展了5个降雨强度(2 mm、5 mm、10 mm、20 mm、40 mm)处理和氮添加(10 g N·m-2·yr-1)对土壤线虫分类、功能和系统发育多样性的影响研究。结果表明, 降水强度较强但频率较低可以提高线虫的分类α多样性、功能α多样性、系统发育α多样性; 同时降低了分类β多样性和系统发育β多样性。然而, 氮添加降低了中高强度降水处理下线虫的分类α多样性、功能α多样性、系统发育α多样性, 同时提高了分类β多样性、功能β多样性和系统发育β多样性。土壤含水量和土壤微生物量碳含量是影响线虫功能及系统发育多样性的主要因素。本研究结果表明, 由于全球气候变化, 未来几十年降雨强度的增加可能有利于干旱和半干旱生态系统中的土壤线虫功能多样性和系统发育多样性。然而, 在氮沉降严重的地区, 这种正效应可能会被氮沉降导致的土壤环境的恶化所抵消。
曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳 (2024) 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响. 生物多样性, 32, 23491. DOI: 10.17520/biods.2023491.
Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui (2024) Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China. Biodiversity Science, 32, 23491. DOI: 10.17520/biods.2023491.
图1 降水及氮添加试验设计概念图。水滴旁的数字代表降水频率, 每个水滴代表1 mm降雨量, N代表氮添加处理。
Fig. 1 Conceptual representation of the precipitation and nitrogen addition experimental design. The numbers next to the drops represent the frequency of precipitation, each drop represents 1 mm of rainfall, and N represents nitrogen addition treatment.
图2 降水强度变化及氮添加对土壤养分(A)、土壤环境(B)、植被特性(C)的影响(平均值 ± 标准误)。N0和N10分别为不添加氮和添加氮的处理。图中不同小写字母表示环境因子分别在N0和N10处理下不同降水强度处理间差异显著(P < 0.05)。
Fig. 2 Effects of precipitation intensity changes and N addition on soil nutrients (a‒p), soil environment (q‒t) and vegetation properties (u‒z) (mean ± SE). N0 and N10 are treatments without and with nitrogen, respectively. Different lowercase letters for soil nutrients (A), soil environment (B), and vegetation characteristics (C) indicate that there are significant differences in different precipitation intensity treatments under N0 and N10 treatments, respectively (P < 0.05). SOC, Soil organic carbon; TN, Total soil nitrogen; TP, Total soil phosphorus; AN, Available nitrogen; NH4+-N, Ammoniacal nitrogen; NO3--N, Nitrate-nitrogen; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; SM, Soil moisture; AGB, Aboveground biomass; BGB, Belowground biomass.
处理 Treatments | 分类α多样性 Taxonomic α diversity | 分类β多样性 Taxonomic β diversity | 功能α多样性 Functional α diversity | 功能β多样性 Functional β diversity | 系统发育α多样性 Phylogenetic α diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|---|---|---|
氮添加 N | 30.207*** | 1.938 | 14.385*** | 2.046 | 10.709** | 0.177 |
水添加 P | 3.395* | 1.123 | 1.363 | 3.610** | 0.426 | 4.608*** |
氮水交互 N × P | 6.761*** | 3.095* | 3.920** | 3.469** | 4.942** | 4.826*** |
表1 降水强度变化(P)和氮添加(N)及其相互作用(N × P)对土壤线虫多样性影响的双因素方差分析结果
Table 1 Results (F-values) of two-way ANOVAs on the effects of N addition (N) and precipitation intensity change (P) and their interactions (N × P) on taxonomic, functional and phylogenetic nematode α and β diversity
处理 Treatments | 分类α多样性 Taxonomic α diversity | 分类β多样性 Taxonomic β diversity | 功能α多样性 Functional α diversity | 功能β多样性 Functional β diversity | 系统发育α多样性 Phylogenetic α diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|---|---|---|
氮添加 N | 30.207*** | 1.938 | 14.385*** | 2.046 | 10.709** | 0.177 |
水添加 P | 3.395* | 1.123 | 1.363 | 3.610** | 0.426 | 4.608*** |
氮水交互 N × P | 6.761*** | 3.095* | 3.920** | 3.469** | 4.942** | 4.826*** |
图3 降水强度变化及氮添加对土壤线虫分类α多样性(a)、功能α多样性(b)、系统发育α多样性(c)、分类β多样性(d)、功能β多样性(e)、系统发育β多样性(f)的影响。N0和N10分别为不添加氮和添加氮的处理。不同小写字母表示线虫多样性在N0处理下不同降水强度处理间差异显著, 不同大写字母表示线虫多样性在N10处理下不同降水强度处理间差异显著(P < 0.05)。星号表示相同降水强度下线虫多样性对氮添加的响应的显著性(*P < 0.05, **P < 0.01)。
Fig. 3 Effects of precipitation intensity change and nitrogen addition on soil nematode taxonomic α and β diversity (a, d), functional α and β diversity (b, e), and phylogenetic α and β diversity (c, f). N0 and N10 are treatments without and with nitrogen, respectively. Different lowercase letters indicate that nematode diversity is significantly different between different precipitation intensities under N0 treatment; different capital letters indicate that nematode diversity is significantly different between different precipitation intensities under N10 treatment (P < 0.05). The significance of N addition on nematode diversity under the same precipitation intensity is indicated by asterisks (*P < 0.05, **P < 0.01).
环境因子 Environmental factors | 分类α多样性 Taxonomic α diversity | 功能α多样性 Functional α diversity | 系统发育α多样性 Phylogenetic α diversity |
---|---|---|---|
含水量 SM (%) | 0.345* | 0.290* | 0.286* |
土壤pH值 pH | 0.512** | 0.402** | 0.397** |
土壤有机碳 SOC (g/kg) | -0.04 | 0.088 | -0.009 |
土壤全氮 TN (g/kg) | -0.04 | 0.099 | 0.043 |
土壤全磷 TP (g/kg) | 0.104 | 0.307* | 0.098 |
土壤微生物量碳 MBC (mg/kg) | 0.420** | 0.312* | 0.405** |
土壤微生物量氮 MBN (mg/kg) | -0.171 | 0.123 | 0.185 |
碱解氮 AN (mg/kg) | -0.113 | 0.037 | -0.149 |
铵态氮 NH4+-N (mg/kg) | 0.093 | -0.093 | -0.044 |
硝态氮 NO3--N (mg/kg) | -0.305* | -0.371** | -0.254 |
植物地上生物量 AGB (g/m2) | -0.232 | -0.260 | -0.155 |
植物地下生物量 BGB (g/m2) | -0.346* | -0.321* | -0.345* |
丰富度 Richness | 0.312* | 0.132 | 0.203 |
表2 环境因子对土壤线虫α多样性影响的相关性分析结果
Table 2 Correlation analysis results of environmental factors on the α diversity of soil nematodes
环境因子 Environmental factors | 分类α多样性 Taxonomic α diversity | 功能α多样性 Functional α diversity | 系统发育α多样性 Phylogenetic α diversity |
---|---|---|---|
含水量 SM (%) | 0.345* | 0.290* | 0.286* |
土壤pH值 pH | 0.512** | 0.402** | 0.397** |
土壤有机碳 SOC (g/kg) | -0.04 | 0.088 | -0.009 |
土壤全氮 TN (g/kg) | -0.04 | 0.099 | 0.043 |
土壤全磷 TP (g/kg) | 0.104 | 0.307* | 0.098 |
土壤微生物量碳 MBC (mg/kg) | 0.420** | 0.312* | 0.405** |
土壤微生物量氮 MBN (mg/kg) | -0.171 | 0.123 | 0.185 |
碱解氮 AN (mg/kg) | -0.113 | 0.037 | -0.149 |
铵态氮 NH4+-N (mg/kg) | 0.093 | -0.093 | -0.044 |
硝态氮 NO3--N (mg/kg) | -0.305* | -0.371** | -0.254 |
植物地上生物量 AGB (g/m2) | -0.232 | -0.260 | -0.155 |
植物地下生物量 BGB (g/m2) | -0.346* | -0.321* | -0.345* |
丰富度 Richness | 0.312* | 0.132 | 0.203 |
环境因子 Environmental factors | 分类β多样性Taxonomic β diversity | 功能β多样性 Functional β diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|
含水量 SM (%) | -0.066 | 0.072 | 0.340** |
土壤pH值 pH | 0.014 | -0.033 | 0.029 |
土壤有机碳 SOC (g/kg) | 0.087 | -0.050 | -0.001 |
土壤全氮 TN (g/kg) | 0.048 | -0.047 | 0.049 |
土壤全磷 TP (g/kg) | 0.026 | -0.029 | 0.057 |
土壤微生物量碳 MBC (mg/kg) | 0.343** | -0.302** | 0.040 |
土壤微生物量氮 MBN (mg/kg) | -0.137 | 0.128 | 0.323** |
碱解氮 AN (mg/kg) | 0.025 | -0.065 | -0.071 |
铵态氮 NH4+-N (mg/kg) | -0.058 | 0.131 | 0.211 |
硝态氮NO3--N (mg/kg) | -0.065 | 0.046 | 0.219 |
植物地上生物量 AGB (g/m2) | -0.014 | -0.054 | 0.054 |
植物地下生物量 BGB (g/m2) | 0.080 | -0.020 | -0.040 |
丰富度 Richness | 0.013 | 0.050 | 0.008 |
表3 环境因子对土壤线虫β多样性影响的相关性分析结果
Table 3 Correlation analysis results of environmental factors on the β diversity of soil nematodes
环境因子 Environmental factors | 分类β多样性Taxonomic β diversity | 功能β多样性 Functional β diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|
含水量 SM (%) | -0.066 | 0.072 | 0.340** |
土壤pH值 pH | 0.014 | -0.033 | 0.029 |
土壤有机碳 SOC (g/kg) | 0.087 | -0.050 | -0.001 |
土壤全氮 TN (g/kg) | 0.048 | -0.047 | 0.049 |
土壤全磷 TP (g/kg) | 0.026 | -0.029 | 0.057 |
土壤微生物量碳 MBC (mg/kg) | 0.343** | -0.302** | 0.040 |
土壤微生物量氮 MBN (mg/kg) | -0.137 | 0.128 | 0.323** |
碱解氮 AN (mg/kg) | 0.025 | -0.065 | -0.071 |
铵态氮 NH4+-N (mg/kg) | -0.058 | 0.131 | 0.211 |
硝态氮NO3--N (mg/kg) | -0.065 | 0.046 | 0.219 |
植物地上生物量 AGB (g/m2) | -0.014 | -0.054 | 0.054 |
植物地下生物量 BGB (g/m2) | 0.080 | -0.020 | -0.040 |
丰富度 Richness | 0.013 | 0.050 | 0.008 |
图4 随机森林模型分别展示了对土壤线虫分类α多样性(a)、功能α多样性(b)、系统发育α多样性(c)、分类β多样性(d)、功能β多样性(e)、系统发育β多样性(f)有影响的环境因子。%IncMSE表示不同因子的重要性。*P < 0.05, **P < 0.01, 表示对土壤线虫不同多样性有显著影响的相关因子。
Fig. 4 Random forest model shows the environmental that affect the taxonomic, functional, and phylogenetic α and β diversity of soil nematodes. SOC, Soil organic carbon; TN, Total soil nitrogen; TP, Total soil phosphorus; AN, Available nitrogen; NH4+-N, Ammoniacal nitrogen; NO3--N, Nitrate-nitrogen; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; SM, Soil moisture; AGB, Aboveground biomass; BGB, Belowground biomass. %IncMSE means the increase in mean squared error. *P < 0.05, **P < 0.01, indicating the associated factors that had significant effects on soil nematode diversity.
[1] |
Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: Molecular analysis using expressed sequenced tags. BMC Genomics, 10, 69.
DOI PMID |
[2] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372. |
[3] | Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant and Soil, 212, 23-33. |
[4] | Bardgett RD, van der Putten WH, (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[5] | Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251. |
[6] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842. |
[7] |
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A (2021) Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 12, 5308.
DOI PMID |
[8] | Chen DM, Lan ZC, Hu SJ, Bai YF (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89, 99-108. |
[9] | Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 96, 413-420. |
[10] | Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biology and Biochemistry, 43, 1474-1481. |
[11] |
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033.
DOI PMID |
[12] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
DOI PMID |
[13] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[14] | Grafen A (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society: Biological Sciences, 326, 119-157. |
[15] | Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Mu SL, Zhu XJ, Wang YF, Li YN, Zhao W (2015) Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agricultural and Forest Meteorology, 214/215, 169-177. |
[16] | Guo Q, Hu ZM, Li XR, Li SG (2013) Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe. Acta Ecologica Sinica, 33, 4808-4817. (in Chinese with English abstract) |
[ 郭群, 胡中民, 李轩然, 李胜功 (2013) 降水时间对内蒙古温带草原地上净初级生产力的影响. 生态学报, 33, 4808-4817.] | |
[17] | Hao GC, Hu ZM, Guo Q, Di K, Li SG (2019) Median to strong rainfall intensity favors carbon sink in a temperate grassland ecosystem in China. Sustainability, 11, 6376. |
[18] | Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348. |
[19] |
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
DOI PMID |
[20] | Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247-293. |
[21] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
PMID |
[22] | IPCC (2013) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[23] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, Yahdjian L, Smith MD (2017) Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI PMID |
[24] | Landesman WJ, Treonis AM, Dighton J (2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54, 87-91. |
[25] | Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264. |
[26] | Li YB, Du XF, Su XL, Han X, Liang WJ, Wang ZW, Bruelheide H, Bezemer TM, Li Q (2023) Local-scale soil nematode diversity in a subtropical forest depends on the phylogenetic and functional diversity of neighbor trees. Plant and Soil, 486, 441-454. |
[27] | Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883-890. |
[28] | Lu RK (2000) Analysis Methods of Soil Agro-Chemistry. China Agriculture Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[29] | Michonneau F, Brown JW, Winter DJ (2016) Rotl: An R package to interact with the open Tree of Life data. Methods in Ecology and Evolution, 7, 1476-1481. |
[30] | Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011) Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082. |
[31] | Papatheodorou EM, Papapostolou A, Monokrousos N, Jones DW, Scullion J, Stamou GP (2020) Crust cover and prior soil moisture status affect the response of soil microbial community and function to extreme rain events in an arid area. European Journal of Soil Biology, 101, 103243. |
[32] |
Paradis E, Schliep K (2019) Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
DOI PMID |
[33] | Peltonen-Sainio P, Sorvali J, Kaseva J (2021) Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future. Agricultural Water Management, 255, 107011. |
[34] | Thakur MP, Del Real IM, Cesarz S, Steinauer K, Reich PB, Hobbie S, Ciobanu M, Rich R, Worm K, Eisenhauer N (2019) Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 135, 184-193. |
[35] | Townshend JL (1963) A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica, 9, 106-110. |
[36] | Tsirogiannis C, Sandel B (2016) PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography, 39, 709-714. |
[37] | van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R, da Cunha Castro JM, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Duong Nguyen TA, Nielsen UN, Okada H, Rius JEP, Pan KW, Peneva V, Pellissier L, da Silva JCP, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergård M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW, (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198. |
[38] | Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22, 671-681. |
[39] | Wagg C, Bender SF, Widmer F, van der Heijden MGA, (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[40] | Wan BB, Liu T, Gong X, Zhang Y, Li CJ, Chen XY, Hu F, Griffiths BS, Liu MQ (2022) Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656. |
[41] | Wang HL, Liu GC, Huang BB, Wang XC, Xing YJ, Wang QG (2021) Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Applied Soil Ecology, 162, 103895. |
[42] | Wei CZ, Zheng HF, Li Q, Lü XT, Yu Q, Zhang HY, Chen QS, He NP, Kardol P, Liang WJ, Han XG (2012) Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE, 7, e43384. |
[43] | Wu SB, Zhang P, Yu BJ, Yu JX, Lei YX, Chen KH, Yang LT (2022) Effects of simulated nitrogen deposition on soil nematode community. Sichuan Agricultural Science and Technology, (9), 86-88. (in Chinese) |
[ 吴少彬, 张萍, 余伯均, 喻佳欣, 雷应雪, 陈开惠, 杨礼通 (2022) 模拟氮沉降对土壤线虫群落的影响. 四川农业科技, (9), 86-88.] | |
[44] | Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556. |
[45] | Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011) Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465. |
[46] |
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[47] | Zhang NL, Wan SQ, Li LH, Bi J, Zhao MM, Ma KP (2008) Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in Northern China. Plant and Soil, 311, 19-28. |
[48] | Zhang YQ, Mao QG, Wang C, Wang SH, Liu T, Mo JM, Lu XK (2020) Advances in effect of nitrogen deposition on soil nematode communities. Journal of Tropical and Subtropical Botany, 28, 105-114. (in Chinese with English abstract) |
[ 张勇群, 毛庆功, 王聪, 王森浩, 刘滔, 莫江明, 鲁显楷 (2020) 氮沉降对土壤线虫群落影响的研究进展. 热带亚热带植物学报, 28, 105-114.] |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[3] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[4] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[5] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[6] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[7] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[8] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[9] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[10] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[11] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[12] | 张伟, 翟东东, 熊飞, 刘红艳, 陈元元, 王莹, 廖传松, 段辛斌, 田辉伍, 邓华堂, 陈大庆. 三峡库区鱼类群落结构和功能多样性[J]. 生物多样性, 2023, 31(2): 22136-. |
[13] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[14] | 刘金花, 李风, 田桃, 肖海峰. 土壤细菌和线虫对热带雨林优势植物凋落物特性和多样性的响应[J]. 生物多样性, 2023, 31(11): 23276-. |
[15] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn