生物多样性 ›› 2024, Vol. 32 ›› Issue (1): 23346. DOI: 10.17520/biods.2023346 cstr: 32101.14.biods.2023346
张飞飞1(), 杨天凤1(
), 陈莉荣1(
), 刘冬梅1(
), 杨柳园1(
), 杨杜宇1(
), 鞠鹏2,*(
)(
), 陆露1,*(
)(
)
收稿日期:
2023-08-21
接受日期:
2023-11-22
出版日期:
2024-01-20
发布日期:
2023-11-28
通讯作者:
*E-mail: jupeng@mail.kib.ac.cn;lulukmu@163.com
基金资助:
Feifei Zhang1(), Tianfeng Yang1(
), Lirong Chen1(
), Dongmei Liu1(
), Liuyuan Yang1(
), Duyu Yang1(
), Peng Ju2,*(
)(
), Lu Lu1,*(
)(
)
Received:
2023-08-21
Accepted:
2023-11-22
Online:
2024-01-20
Published:
2023-11-28
Contact:
*E-mail: jupeng@mail.kib.ac.cn;lulukmu@163.com
摘要:
花粉虽微小似尘埃, 其形态特征的肉眼辨识度低, 但花粉作为植物遗传信息携带和传播的重要结构, 蕴含着被子植物生物多样性成因的关键密码, 可为探索“达尔文恼人之谜”提供一个微形态学的视角。花粉形态具有遗传性和高度多样性, 一直被用于植物分类、演化、生态、生物地理等方面的研究。然而, 已有工作主要聚焦于花粉形状、大小、萌发孔、外壁纹饰和小孢子发生发育等性状, 忽略了在整个被子植物范围内对花粉颜色开展系统性研究。本文阐述了花粉颜色形成的化学和遗传物质基础、花粉颜色多样性的生物驱动因子(传粉者偏好、视觉隐匿、二态性选择等)和非生物驱动因子(紫外线、温度、湿度、经纬度等), 并介绍了花粉颜色在蜂学、植物组培、食品、园艺学等领域的应用现状, 以及目前花粉颜色常见的测量方法。同时, 基于近百年已报道的花粉颜色数据, 利用Fitch简约法重建了被子植物47科71属花粉颜色的演化式样。最后, 结合近年来材料科学、光谱学、人工智能、进化生态学、多组学的发展, 对未来开展花粉颜色物理结构基础、人工智能测量、系统性演化分析、颜色形成分子机制等方面的研究提出了思考和建议。
张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露 (2024) 被子植物花粉颜色多样性及应用研究进展. 生物多样性, 32, 23346. DOI: 10.17520/biods.2023346.
Feifei Zhang, Tianfeng Yang, Lirong Chen, Dongmei Liu, Liuyuan Yang, Duyu Yang, Peng Ju, Lu Lu (2024) Review of pollen color diversity in Angiosperms. Biodiversity Science, 32, 23346. DOI: 10.17520/biods.2023346.
图1 被子植物花粉颜色多样性光镜示意图(根据已有报道或直接观测, 颜色为图像后期着色)。A: 心叶日中花(黄); B: 黄槐决明(黄); C: 炮仗藤(黄); D: 光叶子花(黄); E: 山茶(黄); F: 皋月杜鹃(黄); G: 丰花月季(黄); H: 千屈菜(绿); I: 红萼龙吐珠(灰); J: 倒挂金钟(红); K: 金边吊兰(黄); L: 红花酢浆草(橙); M: 蓝花丹(白); N: 尼泊尔老鹳草(紫); O: 枇杷(黄); P: 萼距花(黄); Q: 木樨(棕); R: 黄金菊(黄); S: 红花羊蹄甲(白); T: 一品红(黄)。
Fig. 1 The angiosperm pollen grains under the optical microscope (the pollen images are colored based on previous reports or direct observations). A, Mesembryanthemum cordifolium (yellow); B, Senna surattensis (yellow); C, Pyrostegia venusta (yellow); D, Bougainvillea glabra (yellow); E, Camellia japonica (yellow); F, Rhododendron indicum (yellow); G, Rosa hybrida (yellow); H, Lythrum salicaria (green); I, Clerodendrum × speciosum (gray); J, Fuchsia hybrida (red); K, Chlorophytum capense var. variegatum (yellow); L, Oxalis corymbose (orange); M, Plumbago auriculata (white); N, Geranium nepalense (purple); O, Eriobotrya japonica (yellow); P, Cuphea hookeriana (yellow); Q, Osmanthus fragrans (brown); R, Euryops pectinatus (yellow); S, Bauhinia × blakeana (white); T, Euphorbia pulcherrima (yellow).
图2 被子植物花粉颜色演化式样。图左侧系统发育树示基于Fitch简约法重建的花粉颜色演化式样, 图右侧基础桑基图示9种主要花粉颜色在被子植物各类群中的分布式样。图中红色竖线表示APG IV (APG IV, 2016)被子植物分类系统下的各主要分支或演化阶, 编号对应的类群如下: I. 桔梗类; II. 唇形类; III. 菊类基部类群; IV. 超菊类基部群; V. 蔷薇类之固氮分支; VI. 蔷薇类之COM分支; VII. 蔷薇类之锦葵类; VIII. 超蔷薇类基部群; IX. 真双子叶基部类群; X. 单子叶植物分支; XI. 木兰类; XII. 被子植物基部类群ANITA阶; XIII. 外类群。
Fig. 2 Diversity and evolutionary patterns of angiosperm pollen color. The phylogenetic tree on the left shows the character optimization of pollen color and its evolutionary pattern based on Fitch parsimony, and the basic Sankey chart shows the distribution pattern of major nine pollen color in angiosperms. The red vertical lines show the major clades or evolutionary grades of angiosperms: I. Campanulids; II. Lamiids; III. Basal asterids; IV. Basal superasterids; V. Nitrogen-fixing clade (Rosids); VI. The COM clade (Rosids); VII. Malvids (Rosids); VIII. Basal superrosids; IX. Basal eudicots; X. Monocots; XI. Magnoliids; XII. The ANITA grade of Basal angiosperms; and XIII. Outgroup.
[1] |
APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of Linnean Society, 181, 1-20.
DOI URL |
[2] |
Andersson S, Jorgensen TH (2005) The genetic basis of naturally occurring pollen color dimorphisms in Nigella degenii (Ranunculaceae). Journal of Heredity, 96, 550-556.
PMID |
[3] |
Austen EJ, Lin SY, Forrest JRK (2018) On the ecological significance of pollen color: A case study in American trout lily (Erythronium americanum). Ecology, 99, 926-937.
DOI PMID |
[4] | Bai Y, Guo YH (2022) Analysis of image recognition technology based on artificial intelligence. Video Engineering, 46(8), 140-143. (in Chinese with English abstract) |
[白艳, 郭艳辉 (2022) 基于人工智能的图像识别技术分析. 电视技术, 46(8), 140-143.] | |
[5] |
Barrell PJ, Wakelin AM, Gatehouse ML, Lister CE, Conner AJ (2010) Inheritance and epistasis of loci influencing carotenoid content in petal and pollen color variants of California poppy (Eschscholzia californica Cham.). Journal of Heredity, 101, 750-756.
DOI URL |
[6] | Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytologist, 174, 482-498. |
[7] |
Bleha R, Shevtsova TV, Živčáková M, Korbářová A, Ježková M, Saloň I, Brindza J, Synytsya A (2021) Spectroscopic discrimination of bee pollen by composition, color, and botanical origin. Foods, 10, 1682.
DOI URL |
[8] |
Cally JG, Stuart-Fox D, Holman L, Dale J, Medina I (2021) Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution, 75, 931-944.
DOI PMID |
[9] |
Ceska O, Styles ED (1984) Flavonoids from Zea mays pollen. Phytochemistry, 23, 1822-1823.
DOI URL |
[10] | Coe EH (1994) Anthocyanin genetics. In: The Maize Handbook (eds Freeling M, Walbot V), pp. 279-281. Springer, New York. |
[11] |
Coe EH, McCormick SM, Modena SA (1981) White pollen in maize. Journal of Heredity, 72, 318-320.
DOI URL |
[12] |
Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature, 374, 27-33.
DOI |
[13] | Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T (2017) The biology of color. Science, 357, eaan0221. |
[14] | Darwin C (1897) The Different Forms of Flowers on Plants of the Same Species. Cambridge University Press, Cambridge. |
[15] |
Dobson HE (1988) Survey of pollen and pollenkitt lipids-chemical cues to flower visitors. American Journal of Botany, 75, 170-182.
DOI URL |
[16] |
Doyle JA (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana, 44, 227-251.
DOI URL |
[17] |
Dunker S, Motivans E, Rakos D, Boho D, Mäder P, Hornick T, Knight TM (2020) Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist, 229, 593-606.
DOI URL |
[18] |
Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 9, 370-396.
DOI URL |
[19] | Erdtman H (1933) The improvement of pollen analysis technique. Svensk Botanisk Tidskrift, 27, 347-357. |
[20] |
Fambrini M, Michelotti V, Pugliesi C (2010) Orange, yellow and white-cream: Inheritance of carotenoid-based colour in sunflower pollen. Plant Biology, 12, 197-205.
DOI PMID |
[21] |
Ferguson MC (1927) A cytological and a genetical study of Petunia-I. Bulletin of the Torrey Botanical Club, 54, 657-664.
DOI URL |
[22] |
Ferreres F, Tomás-Barberán FA, Tomás-Lorente F, Nieto JL, Rumbero A, Olías JM (1989) 8-methoxykaempferol 3-sophoroside, a yellow pigment from almond pollen. Phytochemistry, 28, 1901-1903.
DOI URL |
[23] | Grant-Downton R (2009) Pollen terminology. An illustrated handbook. Annals of Botany, 105, VIII-IX. |
[24] |
Harland SC (1929) The genetics of cotton. Part II. The inheritance of pollen colour in New World cottons. Journal of Genetics, 20, 387-399.
DOI URL |
[25] |
Harvey PH, Paxton RJ (1981) The evolution of aposematic coloration. Oikos, 37, 391-393.
DOI URL |
[26] |
Hernández-Hernández T, Wiens JJ (2020) Why are there so many flowering plants? A multi-scale analysis of plant diversification. The American Naturalist, 195, 948-963.
DOI PMID |
[27] |
Heslop-Harrison J (1968a) Pollen wall development: The succession of events in the growth of intricately patterned pollen walls is described and discussed. Science, 161, 230-237.
DOI URL |
[28] |
Heslop-Harrison J (1968b) Tapetal origin of pollen-coat substances in Lilium. New Phytologist, 67, 779-786.
DOI URL |
[29] |
Heyl FW (1919) The yellow coloring substances of Ragweed pollen. Journal of the American Chemical Society, 41, 1285-1289.
DOI URL |
[30] | Hodges D (1984) The Pollen Loads of the Honey Bee: A Guide to Their Identification by Colour and Form. International Bee Research Association, London. |
[31] |
Hossain MK, Drmosh QA, Mohamedkhair AK (2021) Plasmonic pollen grain nanostructures: A three-dimensional surface-enhanced raman scattering (SERS)-active substrate. Chemistry: An Asian Journal, 16, 1807-1819.
DOI URL |
[32] | Hornby S, Benn J, Vinkenoog R, Goldberg S, Pound MJ (2022) Methods in melissopalynology: Colour determination of pollen pellets for colour vision deficient individuals. Palynology, 46, 1-7. |
[33] |
Hu C, Mei HC, Guo HL, Zheng JL, Zhu J (2021) Soil color determination via microspectrophotometry. Forensic Science and Technology, 46, 507-511. (in Chinese with English abstract)
DOI |
[胡灿, 梅宏成, 郭洪玲, 郑继利, 朱军 (2021) 显微分光光度法分析泥土颜色. 刑事技术, 46, 507-511.]
DOI |
|
[34] | Huang CC (1989) Observation on cashew flower in Hainan. Chinese Journal of Tropical Agriculture, 10(1), 40-43. (in Chinese) |
[黄财城 (1989) 海南腰果花的观察. 热带农业科学, 10(1), 40-43.] | |
[35] |
Ison JL, Tuan ES, Koski MH, Whalen JS, Galloway LF (2019) The role of pollinator preference in the maintenance of pollen colour variation. Annals of Botany, 123, 951-960.
DOI PMID |
[36] |
Jardine PE, Palazzesi L, Tellería MC, Barreda VD (2022) Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angiosperm order (Asterales). New Phytologist, 234, 1075-1087.
DOI PMID |
[37] |
Jin Y, Qian H (2022) PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44, 335-339.
DOI |
[38] |
Jorgensen TH, Petanidou T, Andersson S (2006) The potential for selection on pollen colour dimorphisms in Nigella degenii: Morph-specific differences in pollinator visitation, fertilisation success and siring ability. Evolutionary Ecology, 20, 291-306.
DOI URL |
[39] |
Jorgensen TH, Andersson S (2005) Evolution and maintenance of pollen-colour dimorphisms in Nigella degenii: Habitat-correlated variation and morph-by-environment interactions. New Phytologist, 168, 487-498.
DOI URL |
[40] |
Khidir MO (1970) A note on the inheritance of pollen colour in safflower (Carthamus L.). Canadian Journal of Genetics and Cytology, 12, 360-361.
DOI URL |
[41] |
Kirk WDJ (1994) Recording the colours of pollen loads. Bee World, 75, 169-180.
DOI URL |
[42] | Kim W, Lee W, Park H, Park J, Kim W, Kang B, Choi E, Kim CS, Park JO, Lee G, Bang D, Park J (2022) Biomimetic nano-pine-pollen structure-based surface-enhanced Raman spectroscopy sensing platform for the hypersensitive detection of toxicants: Cadmium and amyloid. ACS Sustainable Chemistry & Engineering, 10, 3180-3190. |
[43] |
Koski MH, Berardi AE, Galloway LF (2020) Pollen colour morphs take different paths to fitness. Journal of Evolutionary Biology, 33, 388-400.
DOI URL |
[44] |
Koski MH, Galloway LF (2018) Geographic variation in pollen color is associated with temperature stress. New Phytologist, 218, 370-379.
DOI PMID |
[45] |
Lau JA, Galloway LF (2004) Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia, 141, 577-583.
DOI URL |
[46] | Laucks ML, Roll G, Schweiger G, Davis EJ (2000) Physical and chemical (Raman) characterization of bioaerosols—Pollen. Journal of Aerosol Science, 31, 307-319. |
[47] | Li AQ (1988) Preliminary report on the genetic relationship between different types of satellite chromosomes and several different characters of kenaf. China’s Fiber Crops, 10(3), 6-9. (in Chinese) |
[李爱青 (1988) 红麻不同类型随体染色体与几个不同性状遗传关系研究初报. 中国麻作, 10(3), 6-9.] | |
[48] | Li J, Yuan SX, Liu C (2012) Factors affecting viability and development of isolated microspore in Lilium. Northern Horticulture, 36(3), 59-63. (in Chinese with English abstract) |
[李佳, 袁素霞, 刘春 (2012) 影响百合游离小孢子活力与发育因素分析. 北方园艺, 36(3), 59-63.] | |
[49] |
Linskens HF (1964) Pollen physiology. Annual Review of Plant Physiology, 15, 255-270.
DOI URL |
[50] |
Lunau K (1995) Notes on the colour of pollen. Plant Systematics and Evolution, 198, 235-252.
DOI URL |
[51] | Lu L, Wortley AH, Li D, Wang H, Blackmore S (2015) Evolution of angiosperm pollen. 2. The basal angiosperms. Annals of the Missouri Botanical Garden, 10, 227-269. |
[52] |
Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden, 86, 297-372.
DOI URL |
[53] |
Mander L (2018) The latitudinal distribution of morphological diversity among holocene angiosperm pollen grains from Eastern North America and the Neotropics. Integrative and Comparative Biology, 58, 1170-1178.
DOI PMID |
[54] | Marx GA (1977) Yp-2: A second gene for pollen color in Pisum. Pisum Newsletter, 9, 29-30. |
[55] |
Matuszewska E, Plewa S, Pietkiewicz D, Kossakowski K, Matysiak J, Rosiński G, Matysiak J (2022) Mass spectrometry-based identification of bioactive bee pollen proteins: Evaluation of allergy risk after bee pollen supplementation. Molecules, 27, 7733-7745.
DOI URL |
[56] |
McCormick S (2013) Pollen. Current Biology, 23, R988-R990.
DOI URL |
[57] |
Mehlenbacher SA, Smith DC (2002) Inheritance of pollen color in hazelnut. Euphytica, 127, 303-307.
DOI URL |
[58] |
Meihls LN, Kaur H, Jander G (2012) Natural variation in maize defense against insect herbivores. Cold Spring Harbor Symposia on Quantitative Biology, 77, 269-283.
DOI PMID |
[59] |
Modro AFH, Silva IC, Luz CFP (2009) Analysis of pollen load based on color, physicochemical composition and botanical source. Anais da Academia Brasileira de Ciências, 81, 281-285.
DOI PMID |
[60] | Młodzińska E (2009) Survey of plant pigments: Molecular and environmental determinants of plant colors. Acta Biologica Cracovienca Series Botanica, 51, 7-16. |
[61] |
Olsson O, Karlsson M, Persson AS, Smith HG, Varadarajan V, Yourstone J, Stjernman M (2021) Efficient, automated and robust pollen analysis using deep learning. Methods in Ecology and Evolution, 12, 850-862.
DOI URL |
[62] |
Oteros J, Weber A, Kutzora S, Rojo J, Heinze S, Herr C, Gebauer R, Schmidt-Weber CB, Buters JTM (2020) An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research, 191, 110031.
DOI URL |
[63] |
Plaza MP, Kolek F, Leier-Wirtz V, Brunner JO, Traidl-Hoffmann C, Damialis A (2022) Detecting airborne pollen using an automatic, real-time monitoring system: Evidence from two sites. International Journal of Environmental Research and Public Health, 19, 2471-2487.
DOI URL |
[64] | Qiao CG, Li SQ, Li MN, Shan LM, Li FX, Wang FJ (1995) Genetic analysis of the white pollen characteristics in sunflower. Oil Crops of China, 17(4), 10-12. (in Chinese with English abstract) |
[乔春贵, 李树强, 李莫南, 单利民, 李凤先, 王福军 (1995) 向日葵白花粉特性的遗传研究. 中国油料, 17(4), 10-12.] | |
[65] | Qin HR, Hu JJ, Sun T, Lu QH, Zhou DW, Kong L (2018) Investigation on the same bee leaving the nest to collect many kinds of nectar and pollen plants at one time. Apiculture of China, 69(6), 49-51. (in Chinese) |
[秦汉荣, 胡军军, 孙甜, 陆启皇, 周大维, 孔蕾 (2018) 同一只蜜蜂一次出巢采集多种蜜粉源植物的调查. 中国蜂业, 69(6), 49-51.] | |
[66] |
Radev Z (2018) Variety in protein content of pollen from 50 plants from Bulgaria. Bee World, 95, 81-83.
DOI URL |
[67] |
Rose MJ, Barthlott W (1994) Coloured pollen in Cactaceae: A mimetic adaptation to hummingbird-pollination? Botanica Acta, 107, 402-406.
DOI URL |
[68] | Roy K, Foote M (1997) Morphological approaches to measuring biodiversity. Trends in Ecology & Evolution, 1, 277-281. |
[69] |
Sivaguru M, Urban MA Fried G, Wesseln CJ, Mander L, Punyasena SW (2016) Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microscopy Research and Technique, 81, 101-114.
DOI URL |
[70] | Soltis PS, Soltis DE (2014) Flower diversity and angiosperm diversification. In: Flower Development (eds Riechmann J, Wellmer F), pp. 85-102. Humana Press, New York. |
[71] | Stanley RG, Linskens HF (1974) Pollen pigments. In: Pollen: Biology Biochemistry Management (eds Barendse GAM, Hollis CA, Jorde W, Kirby EG, Kroh M, Lukoschus FS, Nation JL, Peter JK, Robinson FA, Rosen WG, Vasil IK, Murphy JB), pp. 223-246. Springer, Berlin. |
[72] |
Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733-749.
DOI PMID |
[73] |
Taylor C, Franklin A (2012) The relationship between color-object associations and color preference: Further investigation of ecological valence theory. Psychonomic Bulletin & Review, 19, 190-197.
DOI URL |
[74] | Topitzhofer E, Lucas H, Carlson E, Chakrabarti P, Sagili R (2021) Collection and identification of pollen from honey bee colonies. Journal of Visualized Experiments, 16, e62064. |
[75] |
Trunschke J, Lunau K, Pyke GH, Ren Z, Wang H (2021) Flower color evolution and the evidence of pollinator- mediated selection. Frontiers in Plant Science, 12, 617851.
DOI URL |
[76] |
Turcotte EL, Feaster CV (1966) A second locus for pollen color in Pima cotton, Gossypium barbadense L. Crop Science, 6, 117-119.
DOI URL |
[77] |
Van Tunen AJ, Mur LA, Recourt K, Gerats AG, Mol JN (1991) Regulation and manipulation of flavonoid gene expression in anthers of Petunia: The molecular basis of the Po mutation. Plant Cell, 3, 39-48.
DOI PMID |
[78] |
Van Der Kooi CJ, Stavenga DG, Arikawa Kentaro, Belušic G, Kelber A (2021) Evolution of insect color vision: From spectral sensitivity to visual ecology. Annual Review of Entomology, 66, 435-461.
DOI URL |
[79] |
Vaughn MR, Brooks E, Baindur-Hudson S (2009) A comparison of macroscopic and microscopic hair color measurements and a quantification of the relationship between hair color and thickness. Microscopy and Microanalysis, 15, 189-193.
DOI PMID |
[80] | Verma AK (2017) Genetic diversity as buffer in biodiversity. Indian Journal of Biology, 4, 61-63. |
[81] |
Wakelin AM, Lister CE, Conner AJ (2003) Inheritance and biochemistry of pollen pigmentation in California poppy (Eschscholzia californica Cham.). International Journal of Plant Sciences, 164, 867-875.
DOI URL |
[82] |
Wang X, Quan Q, Wang B, Li Y, Huang S (2018a) Discovery of androecium color polymorphism in Epimedium pubescens with habitat preference of anther/pollen color in the genus. Journal of Plant Ecology, 11, 533-541.
DOI URL |
[83] |
Wang X, Quan Q, Wang B, Li Y, Huang S (2018b) Pollen competition between morphs in a pollen-color dimorphic herb and the loss of phenotypic polymorphism within populations. Evolution, 72, 785-797.
DOI URL |
[84] |
Webby R, Bloor S (2000) Pigments in the blue pollen and bee pollen of Fuchsia excorticata. Zeitschrift für Naturforschung C, 55, 503-505.
DOI URL |
[85] | Wiering H, de Vlaming P, Schram AW, Jonsson LMV, Bennink GJH (1984) Inheritance and biochemistry of pigments. In: Petunia: Monographs on Theoretical and Applied Genetics (ed. Sink KC), pp. 49-76. Springer, Berlin. |
[86] |
Wiermann R, Vieth K (1983) Outer pollen wall, an important accumulation site for flavonoids. Protoplasma, 118, 230-233.
DOI URL |
[87] |
Williams JH, Taylor ML, O’Meara BC (2014) Repeated evolution of tricellular (and bicellular) pollen. American Journal of Botany, 101, 559-571.
DOI PMID |
[88] |
Wolfe LM (2001) Associations among multiple floral polymorphisms in Linum pubescens (Linaceae), a heterostylous plant. International Journal of Plant Sciences, 162, 335-342.
DOI URL |
[89] | Wortley AH, Wang H, Lu L, Li D, Blackmore S (2015) Evolution of angiosperm pollen. 1. Introduction. Annals of the Missouri Botanical Garden, 10, 177-226. |
[90] |
Xiong Y, Jia L, Zhang C, Huang S (2019) Color-matching between pollen and corolla: Hiding pollen via visual crypsis? New Phytologist, 224, 1142-1150.
DOI URL |
[91] | Yang H, Gu Y, Zhang ZY, Luo DX, Sun YD (2017) Effects of different radiation and temperature treatments on pollen viability of watermelon. Jiangsu Agricultural Sciences, 45, 111-113. (in Chinese) |
[杨红, 顾妍, 张朝阳, 罗德旭, 孙玉东 (2017) 不同辐射及温度处理对西瓜花粉生活力的影响. 江苏农业科学, 45, 111-113.] | |
[92] | Zeng XL (2016) Diversity study of wild light walnut flowers in Tibet. Anhui Agricultural Science Bulletin, 22(2), 12-15. (in Chinese) |
[曾秀丽 (2016) 西藏野生光核桃花的多样性研究. 安徽农学通报, 22(2), 12-15.] | |
[93] | Zhang CP, Ping S, Lu YY, Niu DF, Hu FL (2018) The freshness of honeybee pollen of Camellia sinensis by color colorimeter. Journal of Bee, 38(7), 4-7. (in Chinese with English abstract) |
[张翠平, 平舜, 卢媛媛, 牛德芳, 胡福良 (2018) 基于色差的茶蜂花粉新鲜度研究. 蜜蜂杂志, 38(7), 4-7.] | |
[94] | Zhang JP, Wu NY, Fang RM, Gao LR (1993) Color measurement and analysis of tobacco leaves. Journal of Jiangsu Polyetchnic University, 14(4), 7-14. (in Chinese) |
[张建平, 吴宁一, 方如明, 高良润 (1993) 烟叶颜色测量与分析. 江苏工学院学报, 14(4), 7-14.] | |
[95] | Zhang SS, Zhang SB (2010) Distinguish the species of nectar plants by pollen color. In: Proceedings of the 11th National Symposium on Pollen Resources Development and Utilization, pp. 113-119. National Pollen Resources Development and Utilization Liaison Group, Pine Pollen Research and Development Center, Chinese Academy of Forestry, Beijing. (in Chinese) |
[张石生, 张少斌 (2010) 用花粉颜色来区分蜜粉源植物种类. 见: 第十一届全国花粉资源开发与利用研讨会论文集, 113-119页. 全国花粉资源开发与利用联络组、中国林业科学研究院松花粉研究开发中心, 北京.] | |
[96] |
Zhang Z, Chen Z, Sun L, Zhang X, Zhao Y (2019) Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Research, 12, 1579-1584.
DOI |
[97] | Zhang ZW (1987) Several trials analysis of pollen in Cunninghamia lanceolata. Journal of Fujian College of Forestry, 7, 111-116. (in Chinese with English abstract) |
[张卓文 (1987) 杉木花粉几个性状分析. 福建林学院学报, 7, 111-116.] | |
[98] | Zhou L, Liang XM, Zhao L (2022) Biosynthesis of natural carotenoids: Progress and perspective. Biotechnology Bulletin, 38, 119-127. (in Chinese with English abstract) |
[周琳, 梁轩铭, 赵磊 (2022) 天然类胡萝卜素的生物合成研究进展. 生物技术通报, 38, 119-127.]
DOI |
|
[99] |
Zhou LQ, Wang CX, Kuang XJ, Li Y, Sun C (2016) Advance in flavonoids biosynthetic pathway and synthetic biology. China Journal of Chinese Materia Medica, 41, 4124-4128. (in Chinese with English abstract)
DOI PMID |
[邹丽秋, 王彩霞, 匡雪君, 李滢, 孙超 (2016) 黄酮类化合物合成途径及合成生物学研究进展. 中国中药杂志, 41, 4124-4128.] |
[1] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[2] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[3] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[4] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[5] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[6] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[7] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[8] | 何花, 谭敦炎, 杨晓琛. 被子植物隐性雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[9] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[10] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[11] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[12] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[13] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[14] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[15] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn