生物多样性 ›› 2023, Vol. 31 ›› Issue (7): 23061. DOI: 10.17520/biods.2023061 cstr: 32101.14.biods.2023061
所属专题: 大食物观
杨俊毅1, 关潇1,*(), 李俊生1,2, 刘晶晶1, 郝颢晶1, 王槐睿3,*(
)
收稿日期:
2023-02-28
接受日期:
2023-05-16
出版日期:
2023-07-20
发布日期:
2023-07-31
通讯作者:
* E-mail: 作者简介:
57334776@qq.com基金资助:
Junyi Yang1, Xiao Guan1,*(), Junsheng Li1,2, Jingjing Liu1, Haojing Hao1, Huairui Wang3,*(
)
Received:
2023-02-28
Accepted:
2023-05-16
Online:
2023-07-20
Published:
2023-07-31
Contact:
* E-mail: 摘要:
生物多样性与生态系统服务密切相关, 但二者间的复杂关系和反馈机制尚未明晰。本研究以乌江流域为研究区域, 基于物种空间分布格局, 使用MaxEnt模型、Zonation软件评估了乌江流域的生物多样性, 并应用InVEST模型核算各项生态系统服务, 运用随机森林模型、部分依赖图模型(PDP模型)分析了生物多样性与生态系统服务间的相互关系。结果显示: 乌江流域的生物多样性呈东北高西南低的分布特征, 表现为下游 > 中游 > 上游; 2020年, 乌江流域的水源供给量为810.57 mm/m2, 粮食供给量为735.08 kg/ha, 固碳服务为134.00 Mg/ha, 水源涵养量为227.98 mm/m2, 土壤保持量为401.30 t/ha, 生境质量为0.68; 水源供给和水源涵养对生物多样性的贡献度较高, 分别为66.24%和44.72%; 除粮食供给这种依赖人为活动的生态系统服务外, 生物多样性与各生态系统服务均呈正相关。研究说明, 受气候和人类活动影响较大的生态系统服务驱使着生物多样性的改变, 但对于依赖生物功能的生态系统服务, 生物多样性是其重要调节因素。
杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿 (2023) 乌江流域生物多样性与生态系统服务的空间格局及相互关系. 生物多样性, 31, 23061. DOI: 10.17520/biods.2023061.
Junyi Yang, Xiao Guan, Junsheng Li, Jingjing Liu, Haojing Hao, Huairui Wang (2023) Spatial patterns and interrelationships between biodiversity and ecosystem services in the Wujiang River Basin. Biodiversity Science, 31, 23061. DOI: 10.17520/biods.2023061.
图3 乌江流域物种点分布和基于Zonation评估的生物多样性空间格局
Fig. 3 Species point distribution and spatial pattern of biodiversity based on Zonation assessment in the Wujiang River Basin
供给服务 Supply services | 调节服务 Regulating services | 支持服务 Supporting services | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
水源供给 Water supply | 粮食供给 Grain supply | 固碳服务 Carbon sequestration service | 水源涵养 Water conservation | 土壤保持 Soil conservation | 生境质量 Habitat quality | ||||||
均值 Mean (mm/m2) | 总量 Total (× 108 m3) | 均值 Mean (kg/ha) | 总量 Total (× 104 t) | 均值 Mean (Mg/ha) | 总量 Total (Tg) | 均值 Mean (mm/m2) | 总量 Total (× 108 m3) | 均值 Mean (t/ha) | 总量 Total (× 108 t) | 均值 Mean | |
上游 Upstream | 709.85 | 137.94 | 826.30 | 160.60 | 127.30 | 247.41 | 146.13 | 28.37 | 329.24 | 6.40 | 0.63 |
中游 Midstream | 741.94 | 187.51 | 737.81 | 186.49 | 129.74 | 328.00 | 203.06 | 51.28 | 272.42 | 6.88 | 0.66 |
下游 Downstream | 896.37 | 386.86 | 692.40 | 298.88 | 134.00 | 578.40 | 279.42 | 120.52 | 509.21 | 21.98 | 0.72 |
全流域 Total basin | 810.57 | 712.31 | 735.08 | 645.97 | 131.30 | 1,153.81 | 227.98 | 200.18 | 401.30 | 35.26 | 0.68 |
表1 2020年乌江流域六种生态系统服务统计
Table 1 Statistics of six ecosystem service in the Wujiang River Basin in 2020
供给服务 Supply services | 调节服务 Regulating services | 支持服务 Supporting services | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
水源供给 Water supply | 粮食供给 Grain supply | 固碳服务 Carbon sequestration service | 水源涵养 Water conservation | 土壤保持 Soil conservation | 生境质量 Habitat quality | ||||||
均值 Mean (mm/m2) | 总量 Total (× 108 m3) | 均值 Mean (kg/ha) | 总量 Total (× 104 t) | 均值 Mean (Mg/ha) | 总量 Total (Tg) | 均值 Mean (mm/m2) | 总量 Total (× 108 m3) | 均值 Mean (t/ha) | 总量 Total (× 108 t) | 均值 Mean | |
上游 Upstream | 709.85 | 137.94 | 826.30 | 160.60 | 127.30 | 247.41 | 146.13 | 28.37 | 329.24 | 6.40 | 0.63 |
中游 Midstream | 741.94 | 187.51 | 737.81 | 186.49 | 129.74 | 328.00 | 203.06 | 51.28 | 272.42 | 6.88 | 0.66 |
下游 Downstream | 896.37 | 386.86 | 692.40 | 298.88 | 134.00 | 578.40 | 279.42 | 120.52 | 509.21 | 21.98 | 0.72 |
全流域 Total basin | 810.57 | 712.31 | 735.08 | 645.97 | 131.30 | 1,153.81 | 227.98 | 200.18 | 401.30 | 35.26 | 0.68 |
[1] |
Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O'Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Lambers JHR, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science, 333, 1750-1753.
DOI PMID |
[2] | Bongaarts J (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Population and Development Review, 45, 680-681. |
[3] |
Cao M, Li JS, Wang W, Xia JY, Feng CT, Fu G, Huang WJ, Liu FZ (2021) Assessing the effectiveness of water retention ecosystem service in Qinling National Nature Reserve based on InVEST and propensity score matching model. Biodiversity Science, 29, 617-628. (in Chinese with English abstract)
DOI URL |
[曹明, 李俊生, 王伟, 夏聚一, 冯春婷, 付刚, 黄文婕, 刘方正 (2021) 基于InVEST与倾向评分匹配模型评估秦岭国家级自然保护区水源涵养服务保护成效. 生物多样性, 29, 617-628.] | |
[4] | Carpenter SR, Mooney HA, Agard J, Capistrano D, Defries R S, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences, USA, 106, 1305-1312. |
[5] |
Chen SF, Xie L, Zhou WL, Chen H, Xu XJ, Jiang S, Zang MY, Peng Y, Chen X, Duan YF, Chen L, Li XX, Ding H, Fang YM (2022) Species diversity has a positive interrelationship with aboveground biomass and a mismatch with productivity in a subtropical broadleaf forest on the Wuyi Mountains, China. Diversity, 14, 952.
DOI URL |
[6] |
Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12, 064016.
DOI URL |
[7] |
Dai LJ, Ge JS, Wang LQ, Zhang Q, Liang T, Bolan N, Lischeid G, Rinklebe J (2022) Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet Plateau based on random forest regression and structural equation modeling. Science of the Total Environment, 821, 153440.
DOI URL |
[8] | Friedman JH (2001) Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29, 1189-1232. |
[9] | Fu G (2022) The Trade-off and Synergy Between Landscape Pattern Evolution and Ecosystem Services in China in the Past 40 Years. PhD dissertation, Beijing Normal University, Beijing. (in Chinese with English abstract) |
[付刚 (2022) 近40年中国陆域景观格局演变与生态系统服务权衡和协同关系研究. 博士学位论文, 北京师范大学, 北京.] | |
[10] |
Hu LN, Li Q, Yan JH, Liu C, Zhong JX (2022) Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 820, 153137.
DOI URL |
[11] |
Huang Q, Peng L, Huang KX, Deng W, Liu Y (2022) Generalized additive model reveals nonlinear trade-offs/synergies between relationships of ecosystem services for mountainous areas of Southwest China. Remote Sensing, 14, 2733.
DOI URL |
[12] |
Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang X, Liu XJ, Pei K, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[13] |
Jing X, He JS (2021) Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances. Chinese Journal of Plant Ecology, 45, 1094-1111. (in Chinese with English abstract)
DOI |
[井新, 贺金生 (2021) 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望. 植物生态学报, 45, 1094-1111.]
DOI |
|
[14] |
Jing X, Jiang SJ, Liu HY, Li Y, He JS (2022) Complex relationships and feedback mechanisms between climate change and biodiversity. Biodiversity Science, 30, 22462. (in Chinese with English abstract)
DOI |
[井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生 (2022) 气候变化与生物多样性之间的复杂关系和反馈机制. 生物多样性, 30, 22462.]
DOI |
|
[15] |
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707.
DOI PMID |
[16] | Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling & Software, 47, 128-137. |
[17] |
Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177.
DOI URL |
[18] |
Li G, Xiao NW, Luo ZL, Liu DM, Zhao ZP, Guan X, Zang CX, Li JS, Shen ZH (2021) Identifying conservation priority areas for gymnosperm species under climate changes in China. Biological Conservation, 253, 108914.
DOI URL |
[19] | Liu Y, Zhou Y, Du YT (2019) Study on the spatio-temporal patterns of habitat quality and its terrain gradient effects of the middle of Yangtze River economic belt based on the InVEST model. Resources and Environment in the Yangtze Basin, 28, 2429-2440. (in Chinese with English abstract) |
[刘园, 周勇, 杜越天 (2019) 基于InVEST模型的长江中游经济带生境质量的时空分异特征及其地形梯度效应. 长江流域资源与环境, 28, 2429-2440.] | |
[20] |
Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 27, 19-26.
DOI URL |
[21] |
Midgley GF (2012) Biodiversity and ecosystem function. Science, 335, 174-175.
DOI PMID |
[22] |
Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. Journal of Applied Ecology, 54, 12-27.
DOI URL |
[23] |
Paul C, Hanley N, Meyer ST, Fürst C, Weisser WW, Knoke T (2020) On the functional relationship between biodiversity and economic value. Science Advances, 6, eaax7712.
DOI URL |
[24] |
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
DOI URL |
[25] |
Ramirez-Villegas J, Cuesta F, Devenish C, Peralvo M, Jarvis A, Arnillas CA (2014) Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal for Nature Conservation, 22, 391-404.
DOI URL |
[26] |
Rey Benayas JM, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science, 325, 1121-1124.
DOI PMID |
[27] | Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, Han SJ, Ma YX, Hu HF, He NP, Yang YH, Han WX, He HL, Yu GR, Fang JY, Zhou GY (2018) Carbon pools in China's terrestrial ecosystems:New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, USA, 115, 4021-4026. |
[28] |
Wallis CIB, Crofts AL, Inamdar D, Arroyo-Mora JP, Kalacska M, Laliberte E, Vellend M (2023) Remotely sensed carbon content: The role of tree composition and tree diversity. Remote Sensing of Environment, 284, 113333.
DOI URL |
[29] |
Wen Z, Zheng H, Ouyang ZY (2020) Research progress on the relationship between biodiversity and ecosystem services. Chinese Journal of Applied Ecology, 31, 340-348. (in Chinese with English abstract)
DOI |
[文志, 郑华, 欧阳志云 (2020) 生物多样性与生态系统服务关系研究进展. 应用生态学报, 31, 340-348.]
DOI |
|
[30] |
Wen Z, Zheng H, Smith JR, Zhao H, Liu L, Ouyang ZY (2019) Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of the Total Environment, 682, 583-590.
DOI URL |
[31] |
Wu X, Shi WJ, Tao FL (2021) Estimations of forest water retention across China from an observation site-scale to a national-scale. Ecological Indicators, 132, 108274.
DOI URL |
[32] | Yang JY, Li JS, Guan X (2023) Spatio-temporal pattern and driving mechanism of ecosystem carbon sequestration services in the Wujiang River Basin. Research of Environmental Sciences, 36, 757-767. (in Chinese with English abstract) |
[杨俊毅, 李俊生, 关潇 (2023) 乌江流域固碳服务时空格局及驱动机制. 环境科学研究, 36, 757-767.] | |
[33] | Zhang Y, Gurung R, Marx E, Williams S, Ogle S, Paustian K (2020) DayCent model predictions of NPP and grain yields for agricultural lands in the contiguous U.S. Journal of Geophysical Research: Biogeosciences, 125, e2020JG005750. |
[34] | Zhao M, Di DR, Huang GW, Shi WY (2022) Evolution and coupling between economic and population spatial pattern in Wujiang River Basin. Research of Soil and Water Conservation, 29, 298-310, 321. (in Chinese with English abstract) |
[赵敏, 狄东睿, 黄光伟, 时伟宇 (2022) 乌江流域经济与人口空间格局演变及耦合特征. 水土保持研究, 29, 298-310, 321.] | |
[35] |
Zhao ZY, Xiao NW, Shen M, Li JS (2022) Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Science of the Total Environment, 842, 156867.
DOI URL |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[11] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn