生物多样性 ›› 2015, Vol. 23 ›› Issue (1): 18-22. DOI: 10.17520/biods.2014065 cstr: 32101.14.biods.2014065
所属专题: 生物入侵
收稿日期:
2014-03-29
接受日期:
2014-10-07
出版日期:
2015-01-20
发布日期:
2015-05-04
通讯作者:
潘晓云
作者简介:
E-mail: xypan@fudan.edu.cn基金资助:
Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan*()
Received:
2014-03-29
Accepted:
2014-10-07
Online:
2015-01-20
Published:
2015-05-04
Contact:
Xiaoyun Pan
摘要:
表型可塑性可能在外来植物的成功入侵和随后的扩散中起到至关重要的作用。一些研究者推测喜旱莲子草(Alternanthera philoxeroides)入侵地种群可能比原产地种群对光强具有更强的可塑性反应。为了验证该假说, 我们在正常光照和遮荫(30%正常光照)条件下研究了喜旱莲子草原产地(阿根廷)和入侵地(美国)种群在形态特征和生物量分配上是否存在显著差异。结果表明: (1)喜旱莲子草对光照强度具有很强的可塑性。在遮荫处理下, 其根冠比和分枝生物量比显著降低, 而比茎长和比叶面积显著增加; (2)原产地和入侵地喜旱莲子草的总生物量和比叶面积对遮荫的可塑性没有显著差异。入侵地种群的根冠比、分枝强度和比茎长的可塑性显著小于原产地种群; (3)无论在正常或低光照条件下, 入侵地种群的根冠比(-20.8%)、分枝强度(-54.6%)、比茎长(-18.5%)和比叶面积(-8.6%)均显著低于原产地种群。这些结果表明, 喜旱莲子草对光照强度具有很强的可塑性, 这可能是该物种可以分布于从河岸带草丛到疏林灌丛等各种生境的主要原因; 从原产地到入侵地, 喜旱莲子草与耐阴性有关的性状对光照的可塑性显著降低, 可能是该物种在入侵地能够形成单优势种群的主要原因。
张紫妍, 张致杰, 潘晓云 (2015) 喜旱莲子草对遮荫的可塑性反应:入侵地与原产地种群的比较. 生物多样性, 23, 18-22. DOI: 10.17520/biods.2014065.
Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan (2015) Phenotypic plasticity of Alternanthera philoxeroides in response to shading: introduced vs. native populations. Biodiversity Science, 23, 18-22. DOI: 10.17520/biods.2014065.
参数 Source of variation | 总生物量 Total biomass | 根冠比 RSR | 分枝生物量比 BBF | 比茎长 SSL | 比叶面积 SLA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||||
来源地 Origin | 1.05 | 0.309 | 12.87 | 0.001 | 31.60 | <0.001 | 25.40 | <0.001 | 6.69 | 0.012 | ||||
种群 Population | 1.23 | 0.301 | 1.59 | 0.149 | 1.99 | 0.064 | 2.84 | 0.010 | 1.33 | 0.247 | ||||
光照 Shading | 408.82 | <0.001 | 216.62 | <0.001 | 35.41 | <0.001 | 624.00 | <0.001 | 125.16 | <0.001 | ||||
来源地×光照 Origin×shading | 2.51 | 0.119 | 7.50 | 0.008 | 4.66 | 0.035 | 5.81 | 0.019 | 2.304 | 0.135 | ||||
种群×光照 Population×shading | 0.48 | 0.863 | 1.02 | 0.435 | 0.53 | 0.829 | 2.07 | 0.054 | 1.20 | 0.314 |
表1 喜旱莲子草原产地(阿根廷)和入侵地(美国)种群在两种光照条件(对照: 正常光照; 遮荫: 对照光照的30%)下适合度性状和功能性状的方差分析结果
Table 1 ANOVA of the effect of continental origin, population, and shading on total biomass, root/shoot ratio (RSR), branch biomass fraction (BBF), specific stem length (SSL) and specific leaf areas (SLA) of Alternanthera philoxeroides
参数 Source of variation | 总生物量 Total biomass | 根冠比 RSR | 分枝生物量比 BBF | 比茎长 SSL | 比叶面积 SLA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||||
来源地 Origin | 1.05 | 0.309 | 12.87 | 0.001 | 31.60 | <0.001 | 25.40 | <0.001 | 6.69 | 0.012 | ||||
种群 Population | 1.23 | 0.301 | 1.59 | 0.149 | 1.99 | 0.064 | 2.84 | 0.010 | 1.33 | 0.247 | ||||
光照 Shading | 408.82 | <0.001 | 216.62 | <0.001 | 35.41 | <0.001 | 624.00 | <0.001 | 125.16 | <0.001 | ||||
来源地×光照 Origin×shading | 2.51 | 0.119 | 7.50 | 0.008 | 4.66 | 0.035 | 5.81 | 0.019 | 2.304 | 0.135 | ||||
种群×光照 Population×shading | 0.48 | 0.863 | 1.02 | 0.435 | 0.53 | 0.829 | 2.07 | 0.054 | 1.20 | 0.314 |
图1 喜旱莲子草原产地(阿根廷)和入侵地(美国)种群适合度性状与功能性状(均值±标准误)对光照强度响应模式的比较。(a)总生物量; (b)根冠比; (c)分枝生物量比; (d)比茎长; (e)比叶面积。*代表两来源地有显著差异, P<0.05)。
Fig. 1 The effects of light level (control and shading) on total biomass (a), root shoot ratio (b), branch biomass fraction (c), specific stem length (d), and specific leaf area (e) (mean ± S.E.) of Alternanthera philoxeroides from native (Argentina) and introduced (America) ranges. * Significant differences between regions (P<0.05).
1 | Agrawal AA, Fishbein M ( 2006) Plant defense syndromes. Ecology, 87, 132-149. |
2 |
Aikio S, Markkola AM ( 2002) Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availability. Evolutionary Ecology, 16, 67-76.
DOI URL |
3 |
Alpert P, Simms EL ( 2002) Relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evolutionary Ecology, 16, 285-297.
DOI URL |
4 |
Ballare CL, Scopel AL ( 1997) Phytochrome signalling in plant canopies: testing its population-level implications with photoreceptors mutants of Arabidopsis. Functional Ecology, 11, 441-450.
DOI URL |
5 |
Bassett IE, Paynter Q, Beggs JR ( 2011) Effect of artificial shading on growth and competitiveness of Alternanthera philoxeroides(alligator weed). New Zealand Journal of Agricultural Research, 54, 251-260.
DOI URL |
6 |
Caño L, Escarré J, Fleck I, Blanco-Moreno JM, Sans FX ( 2008) Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. Journal of Ecology, 96, 468-476.
DOI URL |
7 |
DeWalt SJ, Denslow JS, Hamrick JL ( 2004) Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia, 138, 521-531.
DOI URL PMID |
8 |
Flory SL, Long F, Clay K ( 2011) Greater performance of introduced vs. native range populations of Microstegium vimineum across different light environment. Basic and Applied Ecology, 12, 350-359.
DOI URL |
9 |
Franklin KA ( 2008) Shade avoidance. New Phytologist, 179, 930-944.
DOI URL PMID |
10 |
Jia X ( 贾昕), Fu DJ ( 傅东静), Pan XY ( 潘晓云), Li J ( 李静), Chen JK ( 陈家宽 ) ( 2007) Growth pattern of alligator weed (Alternanthera philoxeroides) in terrestrial habitats. Biodiversity Science (生物多样性), 15, 241-246. (in Chinese with English abstract)
DOI URL |
11 |
Joshi J, Vrieling K ( 2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters, 8, 704-714.
DOI URL |
12 |
Kumschick S, Hufbauer RA, Alba C, Blumenthal DM ( 2013) Evolution of fast-growing and more resistant phenotypes in introduced common mullein (Verbascum thapsus). Journal of Ecology, 101, 378-387.
DOI URL |
13 |
Müller-Schärer H, Schaffner U, Steinger T ( 2004) Evolution in invasive plants: implications for biological control. Trends in Ecology and Evolution, 19, 417-422.
DOI URL PMID |
14 |
Pan XY ( 潘晓云), Geng YP ( 耿宇鹏), Sosa Alejandro, Zhang WJ ( 张文驹), Li B ( 李博), Chen JK ( 陈家宽 ) ( 2007) Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 45, 884-900. (in Chinese with English abstract)
DOI URL |
15 |
Pan XY, Geng YP, Zhang WJ, Li B, Chen JK ( 2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica, 30, 333-341.
DOI URL |
16 |
Pan XY, Jia X, Fu DJ, Li B ( 2013 a) Geographical diversification of growth-defense strategies in an invasive plant. Journal of Systematics and Evolution, 51, 308-317.
DOI URL |
17 |
Pan XY, Weiner J, Li B ( 2013 b) Size-symmetric competition in a shade-tolerant invasive plant. Journal of Systematics and Evolution, 51, 318-325.
DOI URL |
18 |
PigliucciI M, Kolodynska A ( 2002) Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. Evolutionary Ecology, 16, 27-47.
DOI URL |
19 |
Qing H, Yao YH, Xiao Y, Hu FQ, Sun YX, Zhou CF, An SQ ( 2011) Invasive and native tall forms of Spartina alterniflora respond differently to nitrogen availability. Acta Oecologica, 37, 23-30.
DOI URL |
20 |
Quiroz CL, Choler P, Baptist F, Gonzale-Teuber M, Molina-Montenegro MA, Cavieres LA ( 2009) Alpine dandelions originated in the native and introduced range differ in their responses to environmental constraints. Ecological Research, 24, 175-183.
DOI URL |
21 |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M ( 2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
22 |
Shipley B, Meziane D ( 2002) The balanced-growth hypothesis and allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331.
DOI URL |
23 |
Sultan SE ( 2003) Phenotypic plasticity in plants: a case study in ecological development. Evolution and Development, 5, 25-33.
DOI URL PMID |
[1] | 杜聪聪, 冯学宇, 陈志林. 桥头堡效应中气候生态位差异的缩小促进了红火蚁的入侵[J]. 生物多样性, 2024, 32(11): 24276-. |
[2] | 原雪姣, 张渊媛, 张衍亮, 胡璐祎, 桑卫国, 杨峥, 陈颀. 基于飞机草历史分布数据拟合的物种分布模型及其预测能力[J]. 生物多样性, 2024, 32(11): 24288-. |
[3] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[4] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[5] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[6] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[7] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[8] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[9] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[10] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[11] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[12] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[13] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[14] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[15] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn