生物多样性 ›› 2021, Vol. 29 ›› Issue (9): 1198-1205. DOI: 10.17520/biods.2021095
所属专题: 生物入侵
邓铭先1, 黄河燕1, 沈诗韵1, 吴纪华1,2,3, 拉琼2,3, 斯确多吉4, 潘晓云1,2,3,*()
收稿日期:
2021-03-14
接受日期:
2021-06-13
出版日期:
2021-09-20
发布日期:
2021-09-16
通讯作者:
潘晓云
作者简介:
* E-mail: xypan@fudan.edu.cn基金资助:
Mingxian Deng1, Heyan Huang1, Shiyun Shen1, Jihua Wu1,2,3, Qiong La2,3, Tsechoe Dorji4, Xiaoyun Pan1,2,3,*()
Received:
2021-03-14
Accepted:
2021-06-13
Online:
2021-09-20
Published:
2021-09-16
Contact:
Xiaoyun Pan
摘要:
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。
邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云 (2021) 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较. 生物多样性, 29, 1198-1205. DOI: 10.17520/biods.2021095.
Mingxian Deng, Heyan Huang, Shiyun Shen, Jihua Wu, Qiong La, Tsechoe Dorji, Xiaoyun Pan (2021) Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming in the Tibet Plateau in introduced vs. native populations. Biodiversity Science, 29, 1198-1205. DOI: 10.17520/biods.2021095.
图1 喜旱莲子草对模拟全天增温的响应及其在引入地和原产地种群间的差异(平均值 ± 标准误)
Fig. 1 Responses of Alternanthera philoxeroides to simulated daily warming and difference between introduced (China) and native (Argentina) populations (mean ± SE). BI, Branching intensity; RSR, Root to shoot ratio; SLA, Specific leaf area; SSL, Specific stem length.
变异来源 Source of variation | 适合度性状(生物量) Fitness trait (biomass) | 功能性状 Functional trait | 防御性状 Defense trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|
总 Total | 地上 Ground | 贮藏根 Storage root | 毛根 Hair root | 分枝强度 BI | 比茎长 SSL | 根冠比 RSR | 比叶面积 SLA | 黄酮 Flavonoids | 三萜皂苷 Triterpenoid saponins | |
模拟全天增温 Simulated daily warming (W) | 6.698 (0.027) | 7.054 (0.024) | 12.804 (0.005) | 22.444 (0.001) | 4.585 (0.058) | 67.458 (< 0.001) | 1.999 (0.188) | 0.248 (0.624) | 2.183 (0.155) | 1.837 (0.205) |
来源地 Origin (O) | 0.044 (0.839) | 0.008 (0.933) | 0.879 (0.371) | 0.549 (0.476) | 1.252 (0.289) | 3.883 (0.077) | 0.028 (0.870) | 2.407 (0.137) | 0.023 (0.880) | 1.677 (0.224) |
W × O | 2.928 (0.118) | 2.334 (0.158) | 2.548 (0.141) | 0.199 (0.665) | 0.761 (0.404) | 0.365 (0.618) | 0.178 (0.682) | 4.630 (0.044) | 5.733 (0.027) | 1.675 (0.225) |
表1 喜旱莲子草在全天增温2℃/不增温处理下的适合度性状、功能性状和防御性状在引入地(中国)和原产地(阿根廷)种群间的差异(F (P))。粗体表示效应显著(P < 0.05), 斜体表示弱显著(P < 0.10)。
Table 1 Effects of simulated daily warming on fitness traits, functional traits and defense traits between two different origins (introduced and native) of Alternanthera philoxeroides (F (P)). BI, Branching intensity; RSR, Root to shoot ratio; SLA, Specific leaf area; SSL, Specific stem length. Significant effects are marked in bold, and marginally significant effects are marked in italics.
变异来源 Source of variation | 适合度性状(生物量) Fitness trait (biomass) | 功能性状 Functional trait | 防御性状 Defense trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|
总 Total | 地上 Ground | 贮藏根 Storage root | 毛根 Hair root | 分枝强度 BI | 比茎长 SSL | 根冠比 RSR | 比叶面积 SLA | 黄酮 Flavonoids | 三萜皂苷 Triterpenoid saponins | |
模拟全天增温 Simulated daily warming (W) | 6.698 (0.027) | 7.054 (0.024) | 12.804 (0.005) | 22.444 (0.001) | 4.585 (0.058) | 67.458 (< 0.001) | 1.999 (0.188) | 0.248 (0.624) | 2.183 (0.155) | 1.837 (0.205) |
来源地 Origin (O) | 0.044 (0.839) | 0.008 (0.933) | 0.879 (0.371) | 0.549 (0.476) | 1.252 (0.289) | 3.883 (0.077) | 0.028 (0.870) | 2.407 (0.137) | 0.023 (0.880) | 1.677 (0.224) |
W × O | 2.928 (0.118) | 2.334 (0.158) | 2.548 (0.141) | 0.199 (0.665) | 0.761 (0.404) | 0.365 (0.618) | 0.178 (0.682) | 4.630 (0.044) | 5.733 (0.027) | 1.675 (0.225) |
[1] |
Agathokleous E, Belz RG, Kitao M, Koike T, Calabrese EJ (2019) Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 30, 1569-1580.
DOI |
[2] |
Ban ZH, Wang Q (2015) Responses of the competition between Alternanthera philoxeroides and Sambucus chinensis to simulated warming. Chinese Journal of Plant Ecology, 39, 43-51. (in Chinese with English abstract)
DOI URL |
[班芷桦, 王琼 (2015) 喜旱莲子草和接骨草竞争对模拟增温的响应. 植物生态学报, 39, 43-51.]
DOI |
|
[3] |
Bauerfeind SS, Fischer K (2013) Increased temperature reduces herbivore host-plant quality. Global Change Biology, 19, 3272- 3282
DOI PMID |
[4] | Buckingham GR (1996) Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea, 61, 232-243. |
[5] |
Chevin LM, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160138.
DOI URL |
[6] |
DeWalt SJ, Denslow JS, Hamrick JL (2004) Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia, 138, 521-531.
PMID |
[7] |
Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12, 877-893.
DOI URL |
[8] |
Gunn S, Farrar JF, Collis BE, Nason M (1999) Specific leaf area in barley: Individual leaves versus whole plants. New Phytologist, 143, 45-51.
DOI URL |
[9] |
Harvey LDD (1995) Warm days, hot nights. Nature, 377, 15-16.
DOI URL |
[10] |
Hawkins NJ (2018) Digest: Plants adapt under attack: Genotypic selection and phenotypic plasticity under herbivore pressure. Evolution, 72, 1184-1185.
DOI URL |
[11] |
He WM, Li JJ, Peng PH (2012) Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges. PLoS ONE, 7, e31170.
DOI URL |
[12] |
Holm LG, Weldon LW, Blackburn RD (1969) Aquatic weeds. Science, 166, 699-709.
PMID |
[13] |
Huang HY, Zhu ZC, Wu JH, La Q, Zhou YH, Pan XY (2021) Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming: Introduced vs. native populations. Biodiversity Science, 29, 419-427. (in Chinese with English abstract)
DOI URL |
[黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云 (2021) 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较. 生物多样性, 29, 419-427.]
DOI |
|
[14] |
Hyldgaard B, Brix H (2012) Intraspecies differences in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum. Aquatic Botany, 97, 49-56.
DOI URL |
[15] | Janion-Scheepers C, Phillips L, Sgrò CM, Duffy GA, Hallas R, Chown SL (2018) Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of the Sciences, USA, 115, 145-150. |
[16] | Llorens L, Peñuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004) Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems, 7, 613-624. |
[17] |
Lucob-Agustin N, Kawai T, Kano-Nakata M, Suralta RR, Niones JM, Hasegawa T, Inari-Ikeda M, Yamauchi A, Inukai Y (2021) Morpho-physiological and molecular mechanisms of phenotypic root plasticity for rice adaptation to water stress conditions. Breeding Science, 71, 20-29.
DOI PMID |
[18] |
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F,van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
DOI PMID |
[19] |
Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: Biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. (in Chinese with English abstract)
DOI URL |
[潘晓云, 耿宇鹏, Alejandro Sosa, 张文驹, 李博, 陈家宽 (2007) 入侵植物喜旱莲子草--生物学、生态学及管理. 植物分类学报, 45, 884-900.] | |
[20] | Pigliucci M (2001) Phenotypic Plasticity:Beyond Nature and Nurture. Johns Hopkins University Press, Baltimore. |
[21] |
Ren GQ, Yang HY, Li J, Prabakaran K, Dai ZC, Wang XP, Jiang K, Zou CB, Du DL (2020) The effect of nitrogen and temperature changes on Solidago canadensis phenotypic plasticity and fitness. Plant Species Biology, 35, 283-299.
DOI URL |
[22] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL |
[23] | Sainty G, McCorkelle G, Julien M (1997) Control and spread of Alligator weed Alternanthera philoxeroides (Mart.) Griseb., in Australia: Lessons for other regions. Wetlands Ecology and Management, 5, 195-201. |
[24] |
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
PMID |
[25] |
Shabani F, Ahmadi M, Kumar L, Solhjouy-Fard S, Shafapour Tehrany M, Shabani F, Kalantar B, Esmaeili A (2020) Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecological Indicators, 116, 106436.
DOI URL |
[26] |
Shaw MR, Loik ME, Harte J (2000) Gas exchange and water relations of two Rocky Mountain shrub species exposed to a climate change manipulation. Plant Ecology, 146, 195-204.
DOI URL |
[27] |
Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters, 16, 261-270.
DOI URL |
[28] | Tang ME, Zhang QY, Zhang YC (2020) Warming affects the invasion ability and competitiveness of the invasive plant Alternanthera philoxeroides. Pratacultural Science, 37, 1047-1057. |
[29] |
Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581-591.
PMID |
[30] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL |
[31] |
Winkler E, Fischer M (1999) Two fitness measures for clonal plants and the importance of spatial aspects. Plant Ecology, 141, 191-199.
DOI URL |
[32] |
Yang Y, Liu M, Pan YF, Huang HY, Pan XY, Sosa A, Hou YP, Zhu ZC, Li B (2021) Rapid evolution of latitudinal clines in growth and defence of an invasive weed. New Phytologist, 230, 845-856.
DOI PMID |
[33] |
Yu LR, Zhu ZC, Pan XY (2020) Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: Introduced vs. native genotypes. Biodiversity Science, 28, 651-657. (in Chinese with English abstract)
DOI URL |
[于良瑞, 朱政财, 潘晓云 (2020) 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较. 生物多样性, 28, 651-657.]
DOI |
|
[34] | Zhang L, Qiu XY, Tu YL, Weng XM, Luo J (2018) Three alien species and one new record of wild species in Tibet. Journal of Plant Resources and Environment, 27, 113-114. (in Chinese with English abstract) |
[张丽, 仇晓玉, 土艳丽, 文雪梅, 罗建 (2018) 西藏外来植物3种及野生植物新纪录1种. 植物资源与环境学报, 27, 113-114.] | |
[35] |
Zhou XH, He WM (2020) Climate warming facilitates seed germination in native but not invasive Solidago canadensis populations. Frontiers in Ecology and Evolution, 8, 595214.
DOI URL |
[1] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[2] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[3] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[4] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[5] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[8] | 俄广旭, 白天天, 朱振宇, 郭雪峰. 动物消化道微生物多样性与宿主协同进化关系的研究进展[J]. 生物多样性, 2023, 31(11): 23214-. |
[9] | 戚海迪, 张定海, 单立山, 陈国鹏, 张勃. 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展[J]. 生物多样性, 2023, 31(11): 23273-. |
[10] | 葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性, 2022, 30(7): 22385-. |
[11] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[12] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[13] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[14] | 陈旭, 王国严, 彭培好, 李景吉, 石松林, 张廷斌. 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2021, 29(7): 865-874. |
[15] | 陈旸康, 王益, 李家亮, 王文韬, 冯端宇, 毛康珊. 主流分子钟定年方法的原理、误差来源和使用建议[J]. 生物多样性, 2021, 29(5): 629-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn