生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 727-733. DOI: 10.17520/biods.2019325
所属专题: 生物入侵
收稿日期:
2019-10-17
接受日期:
2020-01-21
出版日期:
2020-06-20
发布日期:
2020-08-19
通讯作者:
陈宝明
基金资助:
Xue Han,Jinquan Su,Nana Yao,Baoming Chen()
Received:
2019-10-17
Accepted:
2020-01-21
Online:
2020-06-20
Published:
2020-08-19
Contact:
Baoming Chen
摘要:
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。
韩雪, 苏锦权, 姚娜娜, 陈宝明 (2020) 外来入侵植物的根系觅养行为研究进展. 生物多样性, 28, 727-733. DOI: 10.17520/biods.2019325.
Xue Han, Jinquan Su, Nana Yao, Baoming Chen (2020) Advances in root foraging behavior of exotic invasive plants. Biodiversity Science, 28, 727-733. DOI: 10.17520/biods.2019325.
[1] |
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 25, 468-478.
URL PMID |
[2] |
Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, Rashed A, Voss U, Alonso J, Stepanova A, Yun J, Ljung K, Brown KM, Lynch JP, Dolan L, Vernoux T, Bishopp A, Wells D, von Wiren N, Bennett MJ, Swarup R (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9, 1409.
DOI URL PMID |
[3] | Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310-318. |
[4] |
Broadbent AAD, Stevens CJ, Ostle NJ, Orwin KH (2018) Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release. Oecologia, 186, 611-620.
DOI URL PMID |
[5] | Bunn RA, Ramsey PW, Lekberg Y (2015) Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. Journal of Ecology, 103, 1547-1556. |
[6] |
Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, Clair CCS (2010) Plants integrate information about nutrients and neighbors. Science, 328, 1657.
URL PMID |
[7] | Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521-523. |
[8] |
Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia, 87, 532-538.
URL PMID |
[9] | Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: Evidence from stable isotopes and physiology. Plant Ecology, 172, 133-141. |
[10] | Chen BM, Su JQ, Liao HX, Peng SL (2018) A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions. Annals of Botany, 121, 561-569. |
[11] | Cheng JK, Yue MF, Yang HR, Chen BM, Xin GR (2019) Do arbuscular mycorrhizal fungi help the native species Bidens biternata resist the invasion of Bidens alba? Plant and Soil, 444, 443-455. |
[12] | Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4, 421-428. |
[13] |
de Kroon H, Mommer L (2006) Root foraging theory put to the test. Trends in Ecology & Evolution, 21, 113-116.
DOI URL |
[14] |
Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, Klironomos J, Makiola A, Nunez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017) The emerging science of linked plant-fungal invasions. New Phytologist, 215, 1314-1332.
DOI URL PMID |
[15] |
Drenovsky RE, Martin CE, Falasco MR, James JJ (2008) Variation in resource acquisition and utilization traits between native and invasive perennial forbs. American Journal of Botany, 95, 681-687.
URL PMID |
[16] | Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59-80. |
[17] | Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124. |
[18] |
Elizabeth KS, James DB, John LM (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology, 90, 1055-1062.
DOI URL PMID |
[19] | Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant, Cell & Environment, 36, 1771-1782. |
[20] | Farley RA, Fitter AH (1999) Temporal and spatial variation in soil resources in a deciduous woodland. Journal of Ecology, 87, 688-696. |
[21] | Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
[22] |
Giehl RF, von Wiren N (2014) Root nutrient foraging. Plant Physiology, 166, 509-517.
DOI URL |
[23] |
Gioria M, Osborne BA (2014) Resource competition in plant invasions: Emerging patterns and research needs. Frontiers in Plant Science, 5, 501.
URL PMID |
[24] |
Golivets M, Wallin KF (2018) Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecology Letters, 21, 745-759.
DOI URL PMID |
[25] |
Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.
DOI URL |
[26] |
Grime JP (2007) The scale-precision trade-off in spacial resource foraging by plants: Restoring perspective. Annals of Botany, 99, 1017-1021.
DOI URL PMID |
[27] |
Harner MJ, Mummey DL, Stanford JA, Rillig MC (2010) Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequence. Biological Invasions, 12, 1481-1490.
DOI URL |
[28] | He XH, Duan YH, Chen YL, Xu MG (2012) Study of mycorrhiza in China for 60 years: Past, present and future. Scientia Sinica Vitae, 42, 431-454. (in Chinese with English abstract) |
[ 何新华, 段英华, 陈应龙, 徐明岗 (2012) 中国菌根研究60年: 过去、现在和将来. 中国科学: 生命科学, 42, 431-454.] | |
[29] |
Hodge A (2004) The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[30] |
Hodge A (2006) Plastic plants and patchy soils. Journal of Experimental Botany, 57, 401-411.
DOI URL PMID |
[31] |
Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell & Environment, 22, 811-820.
DOI URL |
[32] |
Hulvey KB, Teller BJ (2018) Site conditions determine a key native plant’s contribution to invasion resistance in grasslands. Ecology, 99, 1257-1264.
DOI URL PMID |
[33] | Hutchings MJ, de Kroon H (1994) Foraging in plants: The role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[34] |
James J, Mangold J, Sheley R, Svejcar T (2009) Root plasticity of native and invasive Great Basin species in response to soil nitrogen heterogeneity. Plant Ecology, 202, 211-220.
DOI URL |
[35] |
Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
DOI URL PMID |
[36] |
Kembel SW, de Kroon H, Cahill JF Jr, Mommer L (2008) Improving the scale and precision of hypotheses to explain root foraging ability. Annals of Botany, 101, 1295-1301.
DOI URL PMID |
[37] |
Keser LH, Dawson W, Song YB, Yu FH, Fischer M, Dong M, van Kleunen M (2014) Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. Oecologia, 174, 1055-1064.
DOI URL PMID |
[38] |
Keser LH, Visser EJ, Dawson W, Song YB, Yu FH, Fischer M, Dong M, van Kleunen M (2015) Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Frontiers in Plant Science, 6, 237.
DOI URL PMID |
[39] |
Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R (2007) Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a Sahelian soil. FEMS Microbiology Ecology, 62, 32-44.
DOI URL PMID |
[40] |
Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181, 199-207.
DOI URL PMID |
[41] |
Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975-989.
DOI URL |
[42] | Levine NM, Zhang K, Longo M, Baccini A, Phillips OL, Lewis SL, Alvarez-Dávila E, Segalin de Andrade AC, Brienen RJW, Erwin TL, Feldpausch TR, Monteagudo Mendoza AL, Nuñez Vargas P, Prieto A, Silva-Espejo JE, Malhi Y, Moorcroft PR (2016) Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences, USA, 113, 793-797. |
[43] |
Lopez-Zamora I, Comerford NB, Muchovej RM (2004) Root development and competitive ability of the invasive species Melaleuca quinquenervia (Cav.) ST Blake in the South Florida flatwoods. Plant and Soil, 263, 239-247.
DOI URL |
[44] |
Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: Resistance, coexistence or hostile takeover? Ecology Letters, 10, 77-94.
DOI URL PMID |
[45] | Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de Kroon H (2012) Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory? Functional Ecology, 26, 66-73. |
[46] |
Rajaniemi TK, Reynolds HL (2004) Root foraging for patchy resources in eight herbaceous plant species. Oecologia, 141, 519-525.
DOI URL PMID |
[47] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
[48] |
Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI URL PMID |
[49] |
Schulz B, Boyle C (2005) The endophytic continuum. Mycological Research, 109, 661-686.
DOI URL PMID |
[50] | Sielaff AC, Polley HW, Fuentes-Ramirez A, Hofmockel K, Wilsey BJ (2019) Mycorrhizal colonization and its relationship with plant performance differs between exotic and native grassland plant species. Biological Invasions, 21, 1981-1991. |
[51] | Smith SE, Read DJ (2008) Mycorrhizal Simbiosis, 3rd edn. Academic Press, London. |
[52] |
Suding KN, LeJeune KD, Seastedt TR (2004) Competitive impacts and responses of an invasive weed: Dependencies on nitrogen and phosphorus availability. Oecologia, 141, 526-535.
DOI URL PMID |
[53] |
Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework. Journal of Ecology, 106, 480-489.
DOI URL |
[54] |
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406-1423.
DOI URL PMID |
[55] | van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 157, 569-578. |
[56] |
van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI URL PMID |
[57] | Verlinden M, de Boeck HJ, Nijs I (2014) Climate warming alters competition between two highly invasive alien plant species and dominant native competitors. Weed Research, 54, 234-244. |
[58] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
DOI URL PMID |
[59] | Wan FH, Xie BY, Yang GQ (2011) Invasion Biology. Science Press, Beijing. (in Chinese) |
[ 万方浩, 谢丙炎, 杨国庆 (2011) 入侵生物学. 科学出版社, 科学出版社.] | |
[60] | Xiang D, Xu TL, Li H, Chen BD (2017) Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinca, 37, 3597-3606. (in Chinese with English abstract) |
[ 向丹, 徐天乐, 李欢, 陈保冬 (2017) 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 37, 3597-3606.] | |
[61] | Yu WQ, Liu WX, Gui FR, Liu WZ, Wan FH, Zhang LL (2012) Invasion of exotic Ageratina adenophora Sprengel alters soil physical and chemical characteristics and arbuscular mycorrhizal fungus community. Acta Ecologica Sinica, 32, 7027-7035. (in Chinese with English abstract) |
[ 于文清, 刘万学, 桂福荣, 刘文志, 万方浩, 张利莉 (2012) 外来植物紫茎泽兰入侵对土壤理化性质及丛枝菌根真菌(AMF)群落的影响. 生态学报, 32, 7027-7035.] | |
[62] | Zhang FJ, Li Q, Chen FX, Xu HY, Inderjit, Wan FH (2017a) Arbuscular mycorrhizal fungi facilitate growth and competitive ability of an exotic species Flaveria bidentis. Soil Biology and Biochemistry, 115, 275-284. |
[63] | Zhang H, Chang R, Guo X, Liang X, Wang R, Liu J (2017b) Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply. Environmental and Experimental Botany, 135, 118-125. |
[64] |
Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE, 5, e12380.
DOI URL PMID |
[65] |
Zhou J, Dong BC, Alpert P, Li HL, Zhang MX, Lei GC (2012) Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides. Annals of Botany, 109, 813-818.
DOI URL PMID |
[1] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[2] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[3] | 肖俞, 李宇然, 段禾祥, 任正涛, 冯圣碧, 姜志诚, 李家华, 张品, 胡金明, 耿宇鹏. 高黎贡山外来植物入侵现状及管控建议[J]. 生物多样性, 2023, 31(5): 23011-. |
[4] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[5] | 李治霖, 王天明. 亚洲同域分布虎和豹竞争与共存关系概述[J]. 生物多样性, 2022, 30(9): 22271-. |
[6] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[7] | 孙哲明, 刘亚恒, 彭秋桐, 徐芷妍, 杨予静, 欧文慧, 李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议[J]. 生物多样性, 2022, 30(6): 21517-. |
[8] | 叶楠, 侯贝贝, 王超, 王瑞武, 宋建潇. 微生物相互作用中的空间自组织[J]. 生物多样性, 2022, 30(5): 21458-. |
[9] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[10] | 黄正良, 刘翰伦, 储诚进, 李远智. 生物间非传递性竞争研究进展[J]. 生物多样性, 2022, 30(2): 21282-. |
[11] | 陈小红, 陈浩杰, 王雅竹, 肖书礼, 衡小琴, 赵安玖. 濒危植物峨眉含笑的种内、种间竞争[J]. 生物多样性, 2022, 30(11): 22003-. |
[12] | 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较[J]. 生物多样性, 2021, 29(5): 596-604. |
[13] | 于文波, 黎绍鹏. 基于现代物种共存理论的入侵生态学概念框架[J]. 生物多样性, 2020, 28(11): 1362-1375. |
[14] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[15] | 陈宏, 冼晓青, 邱荣洲, 池美香, 赵健. 基于GIS的外来入侵植物调查规划与外业实施[J]. 生物多样性, 2018, 26(1): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn