生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 734-748. DOI: 10.17520/biods.2020005
收稿日期:
2020-01-06
接受日期:
2020-03-23
出版日期:
2020-06-20
发布日期:
2020-05-15
通讯作者:
芒来,白东义
基金资助:
Togtokh Mongke,Haige Han,Ruoyang Zhao,Tugeqin Bao,Manglai Dugarjaviin(),Dongyi Bai()
Received:
2020-01-06
Accepted:
2020-03-23
Online:
2020-06-20
Published:
2020-05-15
Contact:
Manglai Dugarjaviin,Dongyi Bai
摘要:
人类文明发展历史中, 家马(Equus ferus caballus)曾是推动文化交流、促进人类社会发展的主要动力。关于家马何时、何地被驯化以及在此过程中其遗传演化如何被人类影响等一直备受关注。近年来随着遗传学技术的发展, 人们对该问题有了更为深入的理解。本文回顾了近二十年来相关研究所取得的成果, 探讨了家马的驯化起源中心和驯化过程中的遗传演化特征, 并对未来的研究方向以及遗传资源保护提出了建议。分子标记遗传学和考古学研究认为家马可能来自多个驯化起源地种群, 然而最近的古DNA研究结果表明, 现代家马的驯化起源可能比之前人们所猜测的更加复杂, 古代博泰马被认为是最早被驯化的家马, 然而最近被证实并不是现代家马的直系祖先。如此复杂的驯化问题可能从多学科的层次才能解析清楚。人类社会活动直接或间接影响了家马的演化历程, 特别是工业革命以来家马的遗传基础发生了巨大变化, 其遗传多样性开始急剧衰退, 不少地方品种正逐渐走向衰落甚至灭绝。为确保农业生态安全不受威胁, 建议加强家马遗传资源保护与动物遗传学和文化地理之间的联系研究。
陶克涛, 韩海格, 赵若阳, 图格琴, 芒来, 白东义 (2020) 家马的驯化起源与遗传演化特征. 生物多样性, 28, 734-748. DOI: 10.17520/biods.2020005.
Togtokh Mongke, Haige Han, Ruoyang Zhao, Tugeqin Bao, Manglai Dugarjaviin, Dongyi Bai (2020) The origins and genetic characteristics of domestic horses. Biodiversity Science, 28, 734-748. DOI: 10.17520/biods.2020005.
图1 家马不同品种体高对比示意图(以上图片均引自https://en.wikipedia.org/wiki。符合CC BY 2.0、CC BY2.5和CC BY-SA 3.0开放版权协议或属于公共领域)
Fig. 1 Comparison of body sizes of domestic horses of different breeds. Images sourced from https://en.wikipedia.org/wiki licensed under CC BY 2.0, CC BY 2.5 and CC BY-SA 3.0.
图2 家马驯化起源地研究相关区域和普氏野马野生栖息地分布示意图
Fig. 2 Distribution diagram of the related hypothetical centers of horse domestication and the nature habitas of Przewalski’s horse
图3 铜奔马步态与走马步态对比图(以上图片均引自https://en.wikipedia.org/wiki, 符合CC BY 2.0、CC BY 2.5和CC BY-SA 3.0开放版权协议或属于公共领域)
Fig. 3 Comprasion of the gait of Bronze Running Horse and ambling horse. Images sourced from https://en.wikipedia.org/wiki licensed under CC BY 2.0, CC BY 2.5 and CC BY-SA 3.0.
表型 Trait | 基因或QTL区域 Gene or QTL region | 代表性品种 Breed | 参考文献 Reference |
---|---|---|---|
赛跑距离与冲刺能力 Racing distance and sprinting performance | MSTN | 纯血马 Thoroughbreds 夸特马 Quarter horse | |
赛跑能力 Racing performance | PDK4 | 纯血马 Thoroughbreds | |
步态类型(肢体协调能力) Gait type (characterization of motor coordination) | DMRT3 | 冰岛马 Icelandic horse 秘鲁帕索马、田纳西走马、 帕索菲诺、法国特罗特马 Peruvian paso, Tennessee walking horse, Paso Fino, French Trotter | |
跳跃表演能力 Jumping performance | PAPSS2, MYL2, TRHR, GABPA, NRAP, TBX4 | 汉诺威温血马 Hanoverian horse | |
I型多糖贮积性肌病(横纹肌溶解症) Polysaccharide storage myopathy type I, PSSM I (exertional rhabdomyolysis) | GYS1 | 挽马品种 Draft horse breeds 夸特马 Quarter horse | |
身体尺寸 Body size | LCORL, HMGA2, ZFAT, LASP1, NCAPG | 弗朗什?蒙塔涅斯马 Franches-Montagnes 美洲矮种马 American miniature horse 德保矮马 Debao pony | |
PROP1 | 弗里斯兰马 Friesian horse | ||
TBX3 | 德保矮马 Debao pony | ||
耳尖内翻 Inward-turning ear tips | TSHZ1 | 马尔瓦里 Marwari horse | |
极寒环境适应性 Extreme cold adaptation | 顺势调控元件 cis-regulatory | 雅库特马 Yakutian horse | |
高原低氧适应性 High-altitude hypoxia adaptation | EPAS1 | 藏马 Tibetan horse | Liu et al, 2019 |
表1 家马表型性状相关候选基因示例
Table 1 Examples for candidate genes with associations to the phenotypic traits of domestic horses
表型 Trait | 基因或QTL区域 Gene or QTL region | 代表性品种 Breed | 参考文献 Reference |
---|---|---|---|
赛跑距离与冲刺能力 Racing distance and sprinting performance | MSTN | 纯血马 Thoroughbreds 夸特马 Quarter horse | |
赛跑能力 Racing performance | PDK4 | 纯血马 Thoroughbreds | |
步态类型(肢体协调能力) Gait type (characterization of motor coordination) | DMRT3 | 冰岛马 Icelandic horse 秘鲁帕索马、田纳西走马、 帕索菲诺、法国特罗特马 Peruvian paso, Tennessee walking horse, Paso Fino, French Trotter | |
跳跃表演能力 Jumping performance | PAPSS2, MYL2, TRHR, GABPA, NRAP, TBX4 | 汉诺威温血马 Hanoverian horse | |
I型多糖贮积性肌病(横纹肌溶解症) Polysaccharide storage myopathy type I, PSSM I (exertional rhabdomyolysis) | GYS1 | 挽马品种 Draft horse breeds 夸特马 Quarter horse | |
身体尺寸 Body size | LCORL, HMGA2, ZFAT, LASP1, NCAPG | 弗朗什?蒙塔涅斯马 Franches-Montagnes 美洲矮种马 American miniature horse 德保矮马 Debao pony | |
PROP1 | 弗里斯兰马 Friesian horse | ||
TBX3 | 德保矮马 Debao pony | ||
耳尖内翻 Inward-turning ear tips | TSHZ1 | 马尔瓦里 Marwari horse | |
极寒环境适应性 Extreme cold adaptation | 顺势调控元件 cis-regulatory | 雅库特马 Yakutian horse | |
高原低氧适应性 High-altitude hypoxia adaptation | EPAS1 | 藏马 Tibetan horse | Liu et al, 2019 |
[1] | Achilli A, Olivieri A, Soares P, Lancioni H, Kashani BH, Perego UA, Nergadze SG, Carossa V, Santagostino M, Capomaccio S, Felicetti M, Al-Achkar W, Penedo MCT, Verini-Supplizi A, Houshmand M, Woodward SR, Semino O, Silvestrelli M, Giulotto E, Pereira L, Bandelt HJ, Torroni A (2012) Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proceedings of the National Academy of Sciences, USA, 109, 2449-2454. |
[2] | AHC (American Horse Council) (2017) Economic Impact Study of the U.S. Horse Industry. https://www.horsecouncil.org/product/2017-economic-impact-study-u-s-horse-industry (accessed on 2019-12-20) |
[3] |
Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlstrom T, Vinner L, Malaspinas AS, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Della Casa P, Dabrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolar J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Palfi G, Pokutta D, Pospieszny L, Price TD, Saag L, Sablin M, Shishlina N, Smrcka V, Soenov VI, Szeverenyi V, Toth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Ponten T, Brunak S, Nielsen R, Kristiansen K, Willerslev E (2015) Population genomics of Bronze Age Eurasia. Nature, 522, 167-172.
DOI URL PMID |
[4] |
Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, Patra K, Arnason T, Wellbring L, Hjälm G (2012) Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature, 488, 642-646.
DOI URL PMID |
[5] | Anthony DW (2010) The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton University Press, Princeton. |
[6] | Anthony DW, Brown DR (2000) Eneolithic horse exploitation in the Eurasian steppes: Diet, ritual and riding. Antiquity, 74, 75-86. |
[7] |
Anthony DW, Brown DR (2011) The secondary products revolution, horse-riding, and mounted warfare. Journal of World Prehistory, 24, 131-160.
DOI URL |
[8] | Anthony DW, Telegin DY, Brown D (1991) The origin of horseback riding. Scientific American, 265, 94-101. |
[9] |
Bendrey R (2011) Identification of metal residues associated with bit-use on prehistoric horse teeth by scanning electron microscopy with energy dispersive X-ray microanalysis. Journal of Archaeological Science, 38, 2989-2994.
DOI URL |
[10] | Bendry R (2010) The horse. In: Extinctions and Invasions: A Social History of British Fauna (eds O’Connor T, Sykes N), pp. 10-16. Windgather Press, Oxford. |
[11] |
Binns M, Boehler D, Lambert D (2010) Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Animal Genetics, 41, 154-158.
URL PMID |
[12] | Chamberlain JE (2006) Horse: How the Horse Has Shaped Civilizations. BlueBridge Press, New York. |
[13] | Chysyma R, Khrabrova L, Zaitsev А, Мakarova ЕY, Fedorov YN, Ludu B (2017) Genetic diversity in Tyva horses derived from polymorphism of blood systems and microsatellite DNA. Agricultural Biology, 52, 679-685. |
[14] |
Cieslak M, Pruvost M, Benecke N, Hofreiter M, Morales A, Reissmann M, Ludwig A (2010) Origin and history of mitochondrial DNA lineages in domestic horses. PLoS ONE, 5, e15311.
URL PMID |
[15] | Darwin C (1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Oxford University Press, London. |
[16] | Darwin C (1868) The Variation of Animals and Plants Under Domestication. Cambridge University Press, London. |
[17] |
de Barros DP, Martiniano R, Kamm J, Moreno-Mayar JV, Kroonen G, Peyrot M, Barjamovic G, Rasmussen S, Zacho C, Baimukhanov N, Zaibert V, Merz V, Biddanda A, Merz I, Loman V, Evdokimov V, Usmanova E, Hemphill B, Seguin-Orlando A, Yediay FE, Ullah I, Sjogren KG, Iversen KH, Choin J, de la Fuente C, Ilardo M, Schroeder H, Moiseyev V, Gromov A, Polyakov A, Omura S, Senyurt SY, Ahmad H, McKenzie C, Margaryan A, Hameed A, Samad A, Gul N, Khokhar MH, Goriunova OI, Bazaliiskii VI, Novembre J, Weber AW, Orlando L, Allentoft ME, Nielsen R, Kristiansen K, Sikora M, Outram AK, Durbin R, Willerslev E (2018) The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science, 360, eaar7711.
DOI URL PMID |
[18] |
Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG (2015) Evolutionary genomics and conservation of the endangered Przewalski’s horse. Current Biology, 25, 2577-2583.
DOI URL PMID |
[19] |
Dorji J, Tamang S, Tshewang T, Dorji T, Dorji TY (2018) Genetic diversity and population structure of three traditional horse breeds of Bhutan based on 29 DNA microsatellite markers. PLoS ONE, 13, e0199376.
DOI URL PMID |
[20] |
Fages A, Hanghoj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernaldez-Sanchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubezy E, Daugnora L, Davoudi H, de Barros Damgaard P, de los Ángeles, de Chorro y, de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvag S, Erdenebaatar D, Fathi H, Felkel S, Fernandez-Rodriguez C, Garcia-Vinas E, Germonpre M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, Liesau von Lettow-Vorbeck C, Logvin A, Lougas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Palsdottir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papesa A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojevic Vukicevic T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefansson K, Barrey E, Willerslev E, Outram AK, Librado P, Orlando L (2019) Tracking five millennia of horse management with extensive ancient genome time series. Cell, 177, 1419-1435.
DOI URL PMID |
[21] | FAO (2015) The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome. |
[22] | FAO (2017) Domestic Animal Diversity Information System (DAD-IS). http://www.fao.org/dad-is/data/en/ (accessed on 2019-10-17) |
[23] |
Felkel S, Vogl C, Rigler D, Dobretsberger V, Chowdhary BP, Distl O, Fries R, Jagannathan V, Janecka JE, Leeb T, Lindgren G, McCue M, Metzger J, Neuditschko M, Rattei T, Raudsepp T, Rieder S, Rubin CJ, Schaefer R, Schlotterer C, Thaller G, Tetens J, Velie B, Brem G, Wallner B (2019) The horse Y chromosome as an informative marker for tracing sire lines. Scientific Reports, 9, 1-12.
URL PMID |
[24] |
Felkel S, Vogl C, Rigler D, Jagannathan V, Leeb T, Fries R, Neuditschko M, Rieder S, Velie B, Lindgren G, Rubin CJ, Schlotterer C, Rattei T, Brem G, Wallner B (2018) Asian horses deepen the MSY phylogeny. Animal Genetics, 49, 90-93.
URL PMID |
[25] |
Gaunitz C, Fages A, Hanghoj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, Damgaard PD, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubezy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lougas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L (2018) Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science, 360, 111-114.
DOI URL PMID |
[26] | Groves C, Grubb P (2011) Ungulate Taxonomy. The Johns Hopkins University Press, Baltimore. |
[27] |
Han H, Wallner B, Rigler D, MacHugh DE, Manglai D, Hill EW (2019) Chinese Mongolian horses may retain early domestic male genetic lineages yet to be discovered. Animal Genetics, 50, 399-402.
DOI URL PMID |
[28] |
Hanks B (2010) Archaeology of the Eurasian steppes and Mongolia. Annual Review of Anthropology, 39, 469-486.
DOI URL |
[29] |
Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
URL PMID |
[30] |
Hill EW, Bradley DG, Al-Barody M, Ertugrul O, Splan RK, Zakharov I, Cunningham EP (2002) History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Animal Genetics, 33, 287-294.
DOI URL PMID |
[31] |
Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh D (2010a) A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS ONE, 5, e8645.
URL PMID |
[32] |
Hill EW, Gu J, McGivney BA, MacHugh D (2010b) Targets of selection in the Thoroughbred genome contain exercise- relevant gene SNPs associated with elite racecourse performance. Animal Genetics, 41, 56-63.
URL PMID |
[33] | Holgate SA (2018) Outside the Research Lab, Volume 2: Physics in Vintage and Modern Transport. Morgan & Claypool Publishers, San Rafael, CA. |
[34] |
Hunter P (2018) The genetics of domestication: Research into the domestication of livestock and companion animals sheds light both on their “evolution” and human history. EMBO Reports, 19, 201-205.
URL PMID |
[35] |
Jäderkvist K, Holm N, Imsland F, Árnason T, Andersson L, Andersson LS, Lindgren G (2015) The importance of the DMRT3 ‘Gait keeper’ mutation on riding traits and gaits in Standardbred and Icelandic horses. Livestock Science, 176, 33-39.
DOI URL |
[36] | Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K (2002) Mitochondrial DNA and the origins of the domestic horse. Proceedings of the National Academy of Sciences, USA, 99, 10905-10910. |
[37] | Jun J, Cho YS, Hu H, Kim HM, Jho S, Gadhvi P, Park KM, Lim J, Paek WK, Han K, Manica A, Edwards JS, Bhak J (2014) Whole genome sequence and analysis of the Marwari horse breed and its genetic origin. BMC Genomics, 15(Suppl. 9), S4. |
[38] |
Kader A, Li Y, Dong K, Irwin DM, Zhao Q, He X, Liu J, Pu Y, Gorkhali NA, Liu X (2015) Population variation reveals independent selection toward small body size in Chinese Debao pony. Genome Biology and Evolution, 8, 42-50.
DOI URL PMID |
[39] | Kalbfleisch TS, Rice E, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, O’Connell BL, Fiddes IT, Vershinina AO, Petersen JL (2018) EquCab3, an updated reference genome for the domestic horse. BioRxiv, 306928. |
[40] |
Khanshour A, Conant E, Juras R, Cothran EG (2013) Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. Journal of Heredity, 104, 386-398.
DOI URL PMID |
[41] |
Kristjansson T, Bjornsdottir S, Sigurdsson A, Andersson L, Lindgren G, Helyar S, Klonowski A, Arnason T (2014) The effect of the ‘Gait keeper’ mutation in the DMRT3 gene on gaiting ability in Icelandic horses. Journal of Animal Breeding and Genetics, 131, 415-425.
URL PMID |
[42] | Larson G, Karlsson EK, Perri A, Webster MT, Ho SY, Peters J, Stahl PW, Piper PJ, Lingaas F, Fredholm M, Comstock KE, Modiano JF, Schelling C, Agoulnik AI, Leegwater PA, Dobney K, Vigne JD, Vilà C, Andersson L, Lindblad-Toh K (2012) Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences, USA, 109, 8878-8883. |
[43] | Lei ZH, Gao C (2014) Study on the posture of Bronze Running Horse. Studies on Philosophy of Science and Technology, 31(6), 81-86. (in Chinese) |
[ 雷志华, 高策 (2014) 铜奔马姿势的研究. 科学技术哲学, 31(6), 81-86.] | |
[44] |
Levine MA (1990) Dereivka and the problem of horse domestication. Antiquity, 64, 727-740.
DOI URL |
[45] | Levine MA (2005) Domestication and early history of the horse. In: Domestic Horse: The Origins, Development and Management of Its Behaviour, pp. 5-22. Cambridge University Press, Cambridge. |
[46] |
Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghoj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, Der Sarkissian C, Schubert M, Orlando L (2016) The evolutionary origin and genetic makeup of domestic horses. Genetics, 204, 423-434.
DOI URL PMID |
[47] |
Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Theves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques-Bonet T, Ludes B, Crubezy E, Leeb T, Willerslev E, Orlando L (2017) Ancient genomic changes associated with domestication of the horse. Science, 356, 442-445.
URL PMID |
[48] | Librado P, Sarkissian CD, Ermini L, Schubert M, Jonsson H, Albrechtsen A, Fumagalli M, Yang MA, Gambo C, Seguin-Orlando A, Mortensen CD, Petersen B, Hoover CA, Lorente-Galdos B, Nedoluzhko A, Boulygina E, Tsygankova S, Neuditschko M, Jagannathan V, Theves C, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Sicheritz-Ponten T, Popov R, Grigoriev S, Alekseev AN, Rubin EM, McCue M, Rieder S, Leeb T, Tikhonov A, Crubezy E, Slatkin M, Marques-Bonet T, Nielsen R, Willerslev E, Kantanen J, Prokhortchouk E, Orlando L (2015) Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences, USA, 112, 6889-6897. |
[49] |
Lindgren G, Backstrom N, Swinburne J, Hellborg L, Einarsson A, Sandberg K, Cothran G, Vila C, Binns M, Ellegren H (2004) Limited number of patrilines in horse domestication. Nature Genetics, 36, 335-336.
DOI URL PMID |
[50] |
Ling YH, Ma YH, Guan WJ, Cheng YJ, Wang YP, Han JL, Mang L, Zhao QJ, He XH, Pu YB, Fu BL (2011) Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers. Animal Genetics, 42, 56-65.
DOI URL PMID |
[51] |
Lippold S, Knapp M, Kuznetsova T, Leonard JA, Benecke N, Ludwig A, Rasmussen M, Cooper A, Weinstock J, Willerslev E, Shapiro B, Hofreiter M (2011a) Discovery of lost diversity of paternal horse lineages using ancient DNA. Nature Communications, 2, 450.
URL PMID |
[52] |
Lippold S, Matzke NJ, Reissmann M, Hofreiter M (2011b) Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evolutionary Biology, 11, 328.
DOI URL PMID |
[53] |
Lira J, Linderholm A, Olaria C, Brandstrom Durling M, Gilbert MT, Ellegren H, Willerslev E, Liden K, Arsuaga JL, Gotherstrom A (2010) Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses. Molecular Ecology, 19, 64-78.
URL PMID |
[54] | Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, Zheng Z, He X, Zhao Q, Pu Y, Guan W, Han J, Orlando L, Ma Y, Jiang L (2019) EPAS1 gain-of-function mutation contributes to high- altitude adaptation in Tibetan horses. Molecular Biology and Evolution, 19, 1655. |
[55] |
Lopes MS, Mendonca D, Cymbron T, Valera M, da Costa-Ferreira J, Machado AD (2005) The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation. Animal Genetics, 36, 196-202.
URL PMID |
[56] |
Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA, Castanos P, Cieslak M, Lippold S, Llorente L, Malaspinas AS, Slatkin M, Hofreiter M (2009) Coat color variation at the beginning of horse domestication. Science, 324, 485.
URL PMID |
[57] |
Luis C, Bastos-Silveira C, Cothran EG, Oom M (2006) Iberian origins of New World horse breeds. Journal of Heredity, 97, 107-113.
DOI URL PMID |
[58] |
Luis C, Juras R, Oom M, Cothran E (2007) Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Animal Genetics, 38, 20-27.
URL PMID |
[59] |
Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, Loredo AI, Bellone RR, Mezey JG, Brooks SA (2012) Four loci explain 83% of size variation in the horse. PLoS ONE, 7, e39929.
DOI URL PMID |
[60] |
McCoy AM, Schaefer R, Petersen JL, Morrell PL, Slamka MA, Mickelson JR, Valberg SJ, McCue ME (2013) Evidence of positive selection for a glycogen synthase (GYS1) mutation in domestic horse populations. Journal of Heredity, 105, 163-172.
DOI URL PMID |
[61] |
McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guerin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MC, Roed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR (2012) A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genetics, 8, e1002451.
DOI URL PMID |
[62] |
McCue ME, Valberg SJ, Miller MB, Wade C, DiMauro S, Akman HO, Mickelson JR (2008) Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics, 91, 458-466.
DOI URL |
[63] |
Mileto S, Kaiser E, Rassamakin Y, Evershed RP (2017) New insights into the subsistence economy of the Eneolithic Dereivka culture of the Ukrainian North-Pontic region through lipid residues analysis of pottery vessels. Journal of Archaeological Science: Reports, 13, 67-74.
DOI URL |
[64] |
Moyers BT, Morrell PL, McKay JK (2017) Genetic costs of domestication and improvement. Journal of Heredity, 109, 103-116.
URL PMID |
[65] | Oldenbroek JK (1999) Genebanks and the Management of Farm Animal Genetic Resources. DLO Institute for Animal Sciences and Health, Lelystad. |
[66] |
Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PL, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AM, Cahill J, Rasmussen M, Wang X, Min J, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Roed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KA, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MT, Kjaer K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74-78.
DOI URL PMID |
[67] |
Orlando L, Librado P (2019) Origin and evolution of deleterious mutations in horses. Genes (Basel), 10, 649.
DOI URL |
[68] |
Orr N, Back W, Gu J, Leegwater P, Govindarajan P, Conroy J, Ducro B, Van Arendonk J, MacHugh D, Ennis S (2010) Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses. Animal Genetics, 41, 2-7.
DOI URL PMID |
[69] |
Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP (2009) The earliest horse harnessing and milking. Science, 323, 1332-1335.
DOI URL PMID |
[70] |
Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Camara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guerin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MC, Piercy RJ, Raekallio M, Rieder S, Roed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, Wade C, McCue ME (2013a) Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE, 8, e54997.
URL PMID |
[71] |
Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS (2013b) Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genetics, 9, e1003211.
URL PMID |
[72] | Primack RB, Ma KP (2009) A Primer of Conservation Biology. Higher Education Press, Beijing. (in Chinese) |
[ Primack RB, 马克平(2009) 保护生物学简明教程. 高等教育出版社, 高等教育出版社.] | |
[73] |
Promerová M, Andersson L, Juras R, Penedo M, Reissmann M, Tozaki T, Bellone R, Dunner S, Hořín P, Imsland F (2014) Worldwide frequency distribution of the “Gait keeper” mutation in the DMRT3 gene. Animal Genetics, 45, 274-282.
DOI URL PMID |
[74] | Pruvost M, Bellone R, Benecke N, Sandoval-Castellanos E, Cieslak M, Kuznetsova T, Morales-Muniz A, O’Connor T, Reissmann M, Hofreiter M, Ludwig A (2011) Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proceedings of the National Academy of Sciences, USA, 108, 18626-18630. |
[75] |
Rege JEO, Gibson JP (2003) Animal genetic resources and economic development: Issues in relation to economic valuation. Ecological Economics, 45, 319-330.
DOI URL |
[76] |
Ricard A (2015) Does heterozygosity at the DMRT3 gene make French trotters better racers? Genetics Selection Evolution, 47, 1-16.
DOI URL |
[77] |
Royo LJ, Alvarez I, Beja-Pereira A, Molina A, Fernandez I, Jordana J, Gomez E, Gutierrez JP, Goyache F (2005) The origins of Iberian horses assessed via mitochondrial DNA. Journal of Heredity, 96, 663-669.
URL PMID |
[78] |
Sandoval-Castellanos E, Wutke S, Gonzalez-Salazar C, Ludwig A (2017) Coat colour adaptation of post-glacial horses to increasing forest vegetation. Nature Ecology & Evolution, 1, 1816-1819.
DOI URL PMID |
[79] |
Sarkissian CD, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jonsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, Mccue M, Rieder S, Leeb T, Slatkin M, Orlando L (2015) Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse. Current Biology, 25, 2577-2583.
DOI URL PMID |
[80] |
Schröder W, Klostermann A, Stock K, Distl O (2012) A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses. Animal Genetics, 43, 392-400.
DOI URL PMID |
[81] | Schubert M, Jonsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, Albrechtsen A, Dupanloup I, Foucal A, Petersen B, Fumagalli M, Raghavan M, Seguin-Orlando A, Korneliussen TS, Velazquez AM, Stenderup J, Hoover CA, Rubin CJ, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, MacHugh DE, Kalbfleisch T, MacLeod JN, Rubin EM, Sicheritz-Ponten T, Andersson L, Hofreiter M, Marques-Bonet T, Gilbert MT, Nielsen R, Excoffier L, Willerslev E, Shapiro B, Orlando L (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proceedings of the National Academy of Sciences, USA, 111, 5661-5669. |
[82] |
Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, Rieder S (2012) A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS ONE, 7, e37282.
DOI URL PMID |
[83] |
Sommer RS, Benecke N, Lougas L, Nelle O, Schmolcke U (2011) Holocene survival of the wild horse in Europe: A matter of open landscape? Journal of Quaternary Science, 26, 805-812.
DOI URL |
[84] | Thurtle P (2011) The Emergence of Genetic Rationality: Space, Time, and Information in American Biological Science, 1870-1920. University of Washington Press, Seattle. |
[85] |
Tozaki T, Kikuchi M, Kakoi H, Hirota K, Nagata S, Yamashita D, Ohnuma T, Takasu M, Kobayashi I, Hobo S, Manglai D, Petersen JL (2019) Genetic diversity and relationships among native Japanese horse breeds, the Japanese Thoroughbred and horses outside of Japan using genome-wide SNP data. Animal Genetics, 50, 449-459.
DOI URL PMID |
[86] |
Tozaki T, Takezaki N, Hasegawa T, Ishida N, Kurosawa M, Tomita M, Saitou N, Mukoyama H (2003) Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. Journal of Heredity, 94, 374-380.
DOI URL PMID |
[87] |
Trut L, Oskina I, Kharlamova A (2009) Animal evolution during domestication: The domesticated fox as a model. Bioessays, 31, 349-360.
DOI URL PMID |
[88] |
Vila C, Leonard JA, Gotherstrom A, Marklund S, Sandberg K, Liden K, Wayne RK, Ellegren H (2001) Widespread origins of domestic horse lineages. Science, 291, 474-477.
DOI URL PMID |
[89] |
Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlotterer C, Brem G (2017) Y chromosome uncovers the recent oriental origin of modern stallions. Current Biology, 27, 2029-2035.
DOI URL PMID |
[90] |
Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G (2013) Identification of genetic variation on the horse Y chromosome and the tracing of male founder lineages in modern breeds. PLoS ONE, 8, e60015.
DOI URL PMID |
[91] | Wan X (2013) The Horse in Pre-Imperial China. PhD dissertation, University of Pennsylvania, Philadelphia. |
[92] | Warmuth V, Eriksson A, Bower MA, Barker G, Barrett E, Hanks BK, Li S, Lomitashvili D, Ochir-Goryaeva M, Sizonov GV, Soyonov V, Manica A (2012) Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proceedings of the National Academy of Sciences, USA, 109, 8202-8206. |
[93] |
Warmuth V, Eriksson A, Bower MA, Canon J, Cothran G, Distl O, Glowatzki-Mullis ML, Hunt H, Luis C, do Mar Oom M, Yupanqui IT, Zabek T, Manica A (2011) European domestic horses originated in two holocene refugia. PLoS ONE, 6, e18194.
DOI URL PMID |
[94] |
Yang Y, Zhu Q, Liu S, Zhao C, Wu C (2017) The origin of Chinese domestic horses revealed with novel mtDNA variants. Animal Science Journal, 88, 19-26.
DOI URL PMID |
[95] | Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C, Bai DY, Dugarjaviin ML (2018) Overview of the genetic control of horse coat color patterns. Hereditas (Beijing), 40, 357-368. (in Chinese with English abstract) |
[ 赵若阳, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 陶克涛, 图格琴, 旭仁其木格, 青柏, 李超, 白东义, 芒来 (2018) 马毛色遗传机理研究进展. 遗传, 40, 357-368.] |
[1] | 刘珂, 韩思成, 遇赫, 罗述金. 荒漠猫的演化遗传、分类和保护研究进展[J]. 生物多样性, 2022, 30(9): 22396-. |
[2] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[3] | 蔡新宇, 毛晓伟, 赵毅强. 家养动物驯化起源的研究方法与进展[J]. 生物多样性, 2022, 30(4): 21457-. |
[4] | 张文驹, 戎俊, 韦朝领, 高连明, 陈家宽. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. |
[5] | 吴小敏, 徐海根, 朱成松. 遗传资源获取和利益分享与知识产权保护[J]. 生物多样性, 2002, 10(2): 243-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn