生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21458. DOI: 10.17520/biods.2021458
收稿日期:
2021-11-15
接受日期:
2022-02-28
出版日期:
2022-05-20
发布日期:
2022-04-11
通讯作者:
宋建潇
作者简介:
* E-mail: sjx@nwpu.edu.cn基金资助:
Nan Ye, Beibei Hou, Chao Wang, Ruiwu Wang, Jianxiao Song()
Received:
2021-11-15
Accepted:
2022-02-28
Online:
2022-05-20
Published:
2022-04-11
Contact:
Jianxiao Song
摘要:
微生物在全球生态系统中占据着重要地位, 其中一个重要的研究领域是微生物与环境(包括无机环境与生物环境)之间的相互作用。在生态相互作用过程中, 微生物常常通过自组织形成特定的空间模式。微生物的空间模式在种群稳定性、群落动态变化以及维持合作行为方面具有重要作用。本文中, 我们梳理了当下对微生物空间自组织及其所形成的空间模式的研究内容, 首先介绍什么是空间自组织, 再根据生态相互作用类型对自组织的空间模式进行描述, 其中重点讨论合作与竞争中的空间模式, 接着关注微生物空间自组织的过程, 最后我们指出空间自组织对整个群体的结构和功能稳定具有重要意义。研究微生物种群间相互作用中的空间模式, 有助于探索维持合作行为的新机制, 进而为微生物共生系统的构建提供新的理解。
叶楠, 侯贝贝, 王超, 王瑞武, 宋建潇 (2022) 微生物相互作用中的空间自组织. 生物多样性, 30, 21458. DOI: 10.17520/biods.2021458.
Nan Ye, Beibei Hou, Chao Wang, Ruiwu Wang, Jianxiao Song (2022) Spatial self-organization in microbial interactions. Biodiversity Science, 30, 21458. DOI: 10.17520/biods.2021458.
图1 微生物不同生态相互作用类型与模型预测的垂直截面空间模式(改自Momeni et al, 2013a)。A: 两个细菌种群的不同相互作用形式, 实线箭头表示净适合度收益提高(+), 虚线箭头表示净适合度收益降低(-), 无箭头表示净适合度收益不变(0)。B: 两个细菌种群以不同相互作用形式形成群落垂直方向的不同分布模式。a-f分别对应A中的竞争、偏利共生、偏害共生、寄生、相互对抗和合作相互作用。红色与绿色表示不同的细菌种群, 分别以字母R和G表示, 与字母邻近的括号中的符号代表适合度收益: +表示净适合度增高, -表示净适合度降低, 0表示净适合度不变。例如, R [+ -] G描述红色菌群净适合度增高, 而绿色菌群净适合度降低的寄生相互作用。
Fig. 1 Different ecological interaction types and vertical cross-sectional spatial patterns of microorganisms with model predictions (adapted from Momeni et al, 2013a). A, Different forms of interaction between two bacterial populations, with solid arrows indicating increased net fitness benefits (+), dashed connectors indicating decreased net fitness benefits (-), and no arrows indicating no fitness benefits (0). B, Two bacterial populations formed different distributions patterns in the vertical direction of the community. a-f corresponding to competition, commensalism, amensalism, parasitism, mutual antagonism and cooperation, respectively. The red and green colors indicate different bacterial populations, denoted by the R and G, respectively. The symbols in parentheses close to the alphabet represent fitness benefits: + indicates an increase in net fitness, - represents a decrease in net fitness, and 0 means no change in net fitness. For example, R [+ -] G describes a parasitic interaction in which the net fitness of the red colony increases while the net fitness of the green colony decreases.
图2 计算机模拟不同生态相互作用的代表性水平面空间模式(改自Blanchard & Lu, 2015)。红色与绿色表示不同的细菌种群, 分别以字母R和G表示, 与字母邻近的括号中的符号代表适合度收益: +表示净适合度增高, -表示净适合度降低, 0表示净适合度不变。例如, R [- +] G描述红色菌群净适合度降低, 而绿色菌群净适合度增高的寄生相互作用。在不同的生态相互作用形式扩张过程中, 两个细菌群落形成不同类型的水平面空间模式。
Fig. 2 Representative horizontal surface spatial patterns of different ecological interactions with computer simulation (adapted from Blanchard & Lu, 2015). The red and green colors indicate different bacterial populations, denoted by the R and G, respectively. The symbols in parentheses close to the alphabet represent fitness benefits: + indicates an increase in net fitness, - represents a decrease in net fitness, and 0 means no change in net fitness. For example, R [- +] G describes a parasitic interaction in which the net fitness of the red colony decreases while the net fitness of the green colony increases. Two bacterial communities form different types of horizontal surface spatial patterns during expansion with different forms of ecological interactions.
图3 竞争与合作相互作用的空间自组织过程。不同颜色的细菌代表不同的物种。细菌最初随机分布于环境中, 在生长和扩散过程中, 竞争相互作用导致不同物种在空间上隔离, 而彼此间的合作使不同物种在空间上相互混合。
Fig. 3 Spatial self-organization process of competition and cooperation interactions. Different colors represent different bacterial species. Bacteria initially distribute randomly in the environment. During growth and dispersal, competitive interactions will lead to spatial segregation of different species, while cooperation among them allows different species to mix with each other spatially.
图4 欺骗者入侵合作系统空间模式示意图。本图改编自Momeni等(2013b)的研究。根据Momeni等(2013b)的实验结果, 蓝色区域代表合作伙伴, 黄色区域代表合作者, 绿色区域代表欺骗者。合作者们趋向于相互混合, 相互嵌套, 而欺骗者被排挤在群落外围, 这种空间模式有效提高合作者的相互作用频率并避免被欺骗者剥削。
Fig. 4 Schematic diagram of spatial pattern of the cheater invading the cooperative system. This figure was adapted from the study of Momeni et al (2013b). According to the experimental results of Momeni et al (2013b), the blue area represents the cooperative partner, the yellow area represents the cooperator, and the green area represented the cheater. Cooperators tend to mix with each other, while cheaters are crowded out of the community. This spatial pattern effectively increases the frequency of interaction of cooperators and avoids being exploited by cheaters.
[1] |
Allen B, Gore J, Nowak MA (2013) Spatial dilemmas of diffusible public goods. eLife, 2, e01169.
DOI URL |
[2] |
Asfahl KL, Schuster M (2017) Social interactions in bacterial cell-cell signaling. FEMS Microbiology Reviews, 41, 92- 107.
DOI PMID |
[3] |
Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science, 211, 1390-1396.
PMID |
[4] | Bai Y, He CY, Long J, Li XF, Fu XF (2021) Spatial modulation of individual behaviors enables collective decision-making during bacterial group migration. bioRxiv, http://doi.org/10.1101/2021.02.17.431709. |
[5] | Bertalanffy L (1969) General System Theory: Foundations, Development, Applications. Georges Braziller, Inc., New York. |
[6] |
Blanchard AE, Lu T (2015) Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Systems Biology, 9, 59.
DOI PMID |
[7] |
Book G, Ingham C, Ariel G (2017) Modeling cooperating micro-organisms in antibiotic environment. PLoS ONE, 12, e0190037.
DOI URL |
[8] | Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2020) Self-organization in Biological Systems. Princeton University Press, Princeton. |
[9] | Chodkowski JL, Shade A (2017) A synthetic community system for probing microbial interactions driven by exometabolites. mSystems, 2, e00129-17. |
[10] |
D’Souza GG, Povolo VR, Keegstra JM, Stocker R, Ackermann M (2021) Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. The ISME Journal, 15, 2614-2626.
DOI URL |
[11] | Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M (2020) Short-range interactions govern the dynamics and functions of microbial communities. Nature Ecology & Evolution, 4, 366-375. |
[12] | Darch SE, Simoska O, Fitzpatrick M, Barraza JP, Stevenson KJ, Bonnecaze RT, Shear JB, Whiteley M (2018) Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proceedings of the National Academy of Sciences, USA, 115, 4779-4784. |
[13] | Dawkins R, Davis N (2017) The Selfish Gene. Oxford University Press, New York. |
[14] | Doekes HM, Hermsen R (2021) Multiscale selection in spatially structured populations. bioRxiv, http://doi.org/10.1101/2021.12.21.473617. |
[15] | Ebrahimi A, Schwartzman J, Cordero OX (2019) Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proceedings of the National Academy of Sciences, USA, 116, 23309-23316. |
[16] |
Epstein S (2013) The phenomenon of microbial uncultivability. Current Opinion in Microbiology, 16, 636-642.
DOI PMID |
[17] |
Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034-1039.
DOI PMID |
[18] | Figueiredo ART, Kümmerli R (2020) Microbial mutualism: Will you still need me, will you still feed me? Current Biology, 30, R1041-R1043. |
[19] | Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of altruism. Proceedings of the Royal Society B: Biological Sciences, 276, 13-19. |
[20] |
Foster KR, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology, 22, 1845-1850.
DOI PMID |
[21] |
Foster KR, Wenseleers T (2006) A general model for the evolution of mutualisms. Journal of Evolutionary Biology, 19, 1283-1293.
PMID |
[22] |
Frank SA (1994) Genetics of mutualism: The evolution of altruism between species. Journal of Theoretical Biology, 170, 393-400.
PMID |
[23] |
Fu X, Kato S, Long J, Mattingly HH, He C, Vural DC, Zucker SW, Emonet T (2018) Spatial self-organization resolves conflicts between individuality and collective migration. Nature Communications, 9, 2177.
DOI PMID |
[24] |
Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends in Microbiology, 13, 34-40.
PMID |
[25] | Gandhi SR, Yurtsev EA, Korolev KS, Gore J (2016) Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population. Proceedings of the National Academy of Sciences, USA, 113, 6922-6927. |
[26] |
Ge ZP, Liu QX (2020) More than the sum of its parts: Self-organized patterns and emergent properties of ecosystems. Biodiversity Science, 28, 1431-1443. (in Chinese with English abstract)
DOI URL |
[葛振鹏, 刘权兴 (2020) 整体大于部分之和: 生态自组织斑图及其涌现属性. 生物多样性, 28, 1431-1443.] | |
[27] |
Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends in Microbiology, 24, 833-845.
DOI URL |
[28] |
González-Cabaleiro R, Ofiţeru ID, Lema JM, Rodríguez J (2015) Microbial catabolic activities are naturally selected by metabolic energy harvest rate. The ISME Journal, 9, 2630-2641.
DOI URL |
[29] |
Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature, 430, 1024-1027.
DOI URL |
[30] |
Haken H (1977) Synergetics. Physics Bulletin, 28, 412-414.
DOI URL |
[31] | Hamilton WD (1964) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7, 17-52. |
[32] |
Healey D, Axelrod K, Gore J (2016) Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Molecular Systems Biology, 12, 877.
DOI PMID |
[33] |
Karsenti E (2008) Self-organization in cell biology: A brief history. Nature Reviews Molecular Cell Biology, 9, 255- 262.
DOI PMID |
[34] | Kauffman S, Kauffman SA (1995) At Home in the Universe:The Search for the Laws of Self-organization and Complexity. Oxford University Press, New York. |
[35] | Keller L (1999) Levels of Selection in Evolution. Princeton University Press, Princeton. |
[36] |
Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature, 425, 78-81.
DOI URL |
[37] | Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proceedings of the National Academy of Sciences, USA, 105, 18188-18193. |
[38] |
Konopka A (2009) What is microbial community ecology? The ISME Journal, 3, 1223-1230.
DOI URL |
[39] |
Korolev KS, Avlund M, Hallatschek O, Nelson DR (2010) Genetic demixing and evolution in linear stepping stone models. Reviews of Modern Physics, 82, 1691-1718.
PMID |
[40] |
Koschwanez JH, Foster KR, Murray AW (2011) Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biology, 9, e1001122.
DOI URL |
[41] |
Lam TKT, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science, 309, 943-947.
DOI URL |
[42] |
Lawton JH (1999) Are there general laws in ecology? Oikos, 84, 177-192.
DOI URL |
[43] |
Leventhal GE, Ackermann M, Schiessl KT (2019) Why microbes secrete molecules to modify their environment: The case of iron-chelating siderophores. Journal of the Royal Society Interface, 16, 20180674.
DOI URL |
[44] |
Li L, Wu T, Wang Y, Ran M, Kang Y, Ouyang Q, Luo C (2019) Spatial coordination in a mutually beneficial bacterial community enhances its antibiotic resistance. Communications Biology, 2, 301.
DOI URL |
[45] | Li ZJ, Chen XL, Zheng HL (2000) Ecology. Science Press, Beijing. (in Chinese) |
[李振基, 陈小麟, 郑海雷 (2000) 生态学. 科学出版社, 北京.] | |
[46] |
Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: Interspecies interactions that regulate microbial communities. Annual Review of Microbiology, 62, 375-401.
DOI URL |
[47] |
Liu W, Jacquiod S, Brejnrod A, Russel J, Burmølle M, Sørensen SJ (2019) Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. The ISME Journal, 13, 3054-3066.
DOI URL |
[48] |
Liu W, Tokuyasu TA, Fu X, Liu C (2021) The spatial organization of microbial communities during range expansion. Current Opinion in Microbiology, 63, 109-116.
DOI URL |
[49] |
Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: The gaia hypothesis. Tellus, 26, 2-10.
DOI URL |
[50] | McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, USA, 110, 3229-3236. |
[51] |
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526, 531-535.
DOI URL |
[52] |
Mitri S, Clarke E, Foster KR (2016) Resource limitation drives spatial organization in microbial groups. The ISME Journal, 10, 1471-1482.
DOI URL |
[53] |
Mitri S, Foster KR (2013) The genotypic view of social interactions in microbial communities. Annual Review of Genetics, 47, 247-273.
DOI PMID |
[54] | Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proceedings of the National Academy of Sciences, USA, 108, 10839-10846. |
[55] |
Momeni B, Brileya KA, Fields MW, Shou WY (2013a) Strong inter-population cooperation leads to partner intermixing in microbial communities. eLife, 2, e00230.
DOI URL |
[56] |
Momeni B, Waite AJ, Shou WY (2013b) Spatial self-organization favors heterotypic cooperation over cheating. eLife, 2, e00960.
DOI URL |
[57] |
Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14, 589-600.
DOI PMID |
[58] |
Nowak MA (2006) Five rules for the evolution of cooperation. Science, 314, 1560-1563.
DOI URL |
[59] | Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 365, 19-30. |
[60] |
Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiology Ecology, 44, 203-215.
DOI URL |
[61] |
Pande S, Kaftan F, Lang S, Svatoš A, Germerodt S, Kost C (2016) Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. The ISME Journal, 10, 1413-1423.
DOI URL |
[62] | Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, Bischofs IB, Kost C (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nature Communi-cations, 6, 6238. |
[63] |
Preussger D, Giri S, Muhsal LK, Oña L, Kost C (2020) Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Current Biology, 30, 3580-3590.
DOI PMID |
[64] |
Ran M, Wang Y, Wang S, Luo C (2015) Pump-free gradient- based micro-device enables quantitative and high- throughput bacterial growth inhibition analysis. Biomedical Microdevices, 17, 67.
DOI URL |
[65] | Ratzke C, Barrere J, Gore J (2020) Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution, 4, 376-383. |
[66] |
Ratzke C, Gore J (2016) Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population. Nature Microbiology, 1, 16022.
DOI URL |
[67] |
Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Applied and Environmental Microbiology, 73, 7300-7307.
DOI URL |
[68] | Smith MJ, Szathmary E (1997) The Major Transitions in Evolution. Oxford University Press, New York. |
[69] |
Strom SL (2008) Microbial ecology of ocean biogeochemistry: A community perspective. Science, 320, 1043-1045.
DOI URL |
[70] |
Sugden R (1989) Spontaneous order. Journal of Economic Perspectives, 3, 85-97.
DOI URL |
[71] |
Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microbial Ecology, 45, 20-28.
PMID |
[72] |
Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature, 398, 441-443.
DOI URL |
[73] |
van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ (2008) Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science, 322, 739-742.
DOI PMID |
[74] | Wedlich-Söldner R, Betz T (2018) Self-organization: The fundament of cell biology. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 373, 20170103. |
[75] |
Wingreen NS, Levin SA (2006) Cooperation among microorganisms. PLoS Biology, 4, e299.
DOI PMID |
[76] |
Wootton JT (2001) Local interactions predict large-scale pattern in empirically derived cellular automata. Nature, 413, 841-844.
DOI URL |
[77] |
Xu H, Dauparas J, Das D, Lauga E, Wu Y (2019) Self- organization of swimmers drives long-range fluid transport in bacterial colonies. Nature Communications, 10, 1792.
DOI URL |
[78] | Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC (2019) Drivers of spatial structure in social microbial communities. Current Biology, 29, R545-R550. |
[79] |
Zhang Z, van Kleunen M, Becks L, Thakur MP (2020) Towards a general understanding of bacterial interactions. Trends in Microbiology, 28, 783-785.
DOI URL |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[3] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[4] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[5] | 肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高. 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J]. 生物多样性, 2023, 31(4): 22585-. |
[6] | 曾青, 熊超, 尹梅, 葛安辉, 韩丽丽, 张丽梅. 植物微生物组生态功能与群落构建过程研究进展[J]. 生物多样性, 2023, 31(4): 22667-. |
[7] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[8] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[9] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[10] | 俄广旭, 白天天, 朱振宇, 郭雪峰. 动物消化道微生物多样性与宿主协同进化关系的研究进展[J]. 生物多样性, 2023, 31(11): 23214-. |
[11] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[12] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[13] | 程建伟, 王亚东, 王桠楠, 李莹, 郭颖, 白正, 刘新民, 李永宏. 半干旱草原大中型土壤动物在畜粪分解中的作用[J]. 生物多样性, 2022, 30(12): 22575-. |
[14] | 宋成军, 孙锋. 干旱对不同花椒种植模式下土壤微生物和线虫群落的影响[J]. 生物多样性, 2021, 29(10): 1348-1357. |
[15] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn