生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22289. DOI: 10.17520/biods.2022289
所属专题: 生物入侵
陈敏豪1, 张超2, 王嘉栋1, 湛振杰1, 陈君帜2, 栾晓峰1,*()
收稿日期:
2022-05-27
接受日期:
2022-08-31
出版日期:
2023-01-20
发布日期:
2022-11-11
通讯作者:
*栾晓峰, E-mail: luanxiaofeng@bjfu.edu.cn
基金资助:
Minhao Chen1, Chao Zhang2, Jiadong Wang1, Zhenjie Zhan1, Junzhi Chen2, Xiaofeng Luan1,*()
Received:
2022-05-27
Accepted:
2022-08-31
Online:
2023-01-20
Published:
2022-11-11
Contact:
*Xiaofeng Luan, E-mail: luanxiaofeng@bjfu.edu.cn
摘要:
作为入侵物种, 北美水貂(Neovison vison)在欧洲引起了一系列生态问题, 侵占了欧亚水獭(Lutra lutra)的生态空间, 其入侵性对当地生物多样性和生态系统构成了严重威胁。水貂引入我国东北地区已有70多年的历史, 然而国内对其野外种群却鲜有研究。掌握水貂种群的入侵范围、入侵影响因素以及与本地具有相似生态位的欧亚水獭之间的竞争关系, 对水貂的入侵管理和东北地区的生物多样性保护具有重要意义。本研究利用实地调查和文献资料获取的分布信息, 通过集合模型识别水貂和水獭的潜在分布区, 评估水貂对水獭在地理空间上的入侵风险, 并通过主成分分析(principal component analysis, PCA)评估其生态位重叠和影响因素。结果表明: (1)我国东北地区水貂的潜在分布区面积为61,944.57 km2, 水獭的潜在分布区面积为83,590.94 km2, 两者重叠区域面积为50,544.21 km2, 占水獭潜在分布区面积的60.47%; (2)从各省分布情况来看, 黑龙江省水獭受水貂入侵的风险最高, 潜在分布区重叠的比例达到78.94%, 其次是吉林省, 重叠比例约为53.80%; (3)水貂和水獭生态位存在高度重叠, Schoener’s D值达到0.60。单因子生态位分析结果表明, 水獭比水貂对耕地密度更加敏感, 集中分布在低耕地密度区; 水獭和水貂均倾向选择有林地密度较高的区域, 但水貂在有林地密度的选择上更加平滑, 对森林的依赖程度比水獭低; 水貂相比水獭更倾向选择降水量低的区域; 水獭比水貂更倾向选择高海拔的栖息地。根据地理分布特征和生态位分析的结果, 我们建议通过控制人为干扰调控水獭和水貂的竞争关系, 以抑制水貂在东北地区的入侵。
陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰 (2023) 北美水貂和欧亚水獭在东北地区的分布与生态位重叠. 生物多样性, 31, 22289. DOI: 10.17520/biods.2022289.
Minhao Chen, Chao Zhang, Jiadong Wang, Zhenjie Zhan, Junzhi Chen, Xiaofeng Luan (2023) Distribution and niche overlap of American mink and Eurasian otter in Northeast China. Biodiversity Science, 31, 22289. DOI: 10.17520/biods.2022289.
环境变量 Environmental variables | 重要性 Importance | 平方和的平方根 RSS | 物种分布 模型 SDM | 生态位量化 Niche quantification* | 数据来源 Data sources | |
---|---|---|---|---|---|---|
水貂 Mink | 水獭 Otter | |||||
距水域距离 Distance from water | 0.765 | 0.692 | 1.031 | ● | ● | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn/ |
居民点密度 Residential density | 0.124 | 0.036 | 0.129 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
耕地密度 Cultivated land density | 0.037 | 0.112 | 0.118 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
最干季降水量 Precipitation of driest quarter | 0.056 | 0.056 | 0.080 | ● | ● | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
海拔 Elevation | 0.070 | 0.005 | 0.071 | ● | ● | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
有林地密度 Forest density | 0.021 | 0.029 | 0.036 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
最湿季降水量 Precipitation of wettest quarter | 0.014 | 0.001 | 0.014 | ● | ● | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
坡度 Slope | 0.008 | 0.002 | 0.009 | ● | × | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
地表起伏度 Relief degree of land surface | 0.007 | 0.004 | 0.008 | ● | × | 全球变化科学研究数据出版系统 Global Change Research Data Publishing and Repository http://www.geodoi.ac.cn/ |
距一级支流距离 Distance from primary tributaries | 0.004 | 0.007 | 0.008 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距二级支流距离 Distance from secondary tributaries | 0.007 | 0.002 | 0.008 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
坡向 Aspect | 0.005 | 0.003 | 0.006 | ● | × | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
距主要河流距离 Distance from major rivers | 0.004 | 0.001 | 0.004 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距道路距离 Distance from road | 0.002 | 0.000 | 0.002 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距城镇距离 Distance from town | 0.001 | 0.001 | 0.001 | ● | × | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx |
年降水量 Annual precipitation | - | - | - | × | × | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
表1 环境变量的重要性及建模选择。年降水量在使用方差膨胀因子评估后被排除; ● 被选择的环境变量; × 被排除的环境变量。
Table 1 Importance and selected for modeling of environmental variables. Annual precipitation is excluded after assessment using variance inflation factor; ●, Selected environmental variable; ×, Excluded environmental variable.
环境变量 Environmental variables | 重要性 Importance | 平方和的平方根 RSS | 物种分布 模型 SDM | 生态位量化 Niche quantification* | 数据来源 Data sources | |
---|---|---|---|---|---|---|
水貂 Mink | 水獭 Otter | |||||
距水域距离 Distance from water | 0.765 | 0.692 | 1.031 | ● | ● | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn/ |
居民点密度 Residential density | 0.124 | 0.036 | 0.129 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
耕地密度 Cultivated land density | 0.037 | 0.112 | 0.118 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
最干季降水量 Precipitation of driest quarter | 0.056 | 0.056 | 0.080 | ● | ● | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
海拔 Elevation | 0.070 | 0.005 | 0.071 | ● | ● | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
有林地密度 Forest density | 0.021 | 0.029 | 0.036 | ● | ● | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx/ |
最湿季降水量 Precipitation of wettest quarter | 0.014 | 0.001 | 0.014 | ● | ● | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
坡度 Slope | 0.008 | 0.002 | 0.009 | ● | × | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
地表起伏度 Relief degree of land surface | 0.007 | 0.004 | 0.008 | ● | × | 全球变化科学研究数据出版系统 Global Change Research Data Publishing and Repository http://www.geodoi.ac.cn/ |
距一级支流距离 Distance from primary tributaries | 0.004 | 0.007 | 0.008 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距二级支流距离 Distance from secondary tributaries | 0.007 | 0.002 | 0.008 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
坡向 Aspect | 0.005 | 0.003 | 0.006 | ● | × | SRTM 90 m数字高程数据 SRTM 90 m Digital Elevation Database http://srtm.csi.cgiar.org/ |
距主要河流距离 Distance from major rivers | 0.004 | 0.001 | 0.004 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距道路距离 Distance from road | 0.002 | 0.000 | 0.002 | ● | × | 全国地理信息资源目录服务系统 National Catalogue Service for Geographic Information https://www.webmap.cn |
距城镇距离 Distance from town | 0.001 | 0.001 | 0.001 | ● | × | 资源环境科学与数据中心 Resource and Environment Science and Data Center http://www.resdc.cn/Default.aspx |
年降水量 Annual precipitation | - | - | - | × | × | 世界气候数据网站 WorldClim http://www.worldclim.org/ |
省份 Province | 潜在分布区 Potential distribution (km2) | 重叠比例 Proportion of overlap | ||
---|---|---|---|---|
水貂 Mink | 水獭 Otter | 重叠区域 Overlapping region | ||
内蒙古 Inner Mongolia | 12,616.02 | 27,758.67 | 12,135.05 | 43.72% |
辽宁 Liaoning | 283.56 | 2,780.04 | 266.35 | 9.58% |
吉林 Jilin | 8,264.06 | 14,871.51 | 8,001.23 | 53.80% |
黑龙江 Heilongjiang | 40,780.93 | 38,180.71 | 30,141.58 | 78.94% |
总计 Total | 61,944.57 | 83,590.94 | 50,544.21 | 60.47% |
表2 东北地区北美水貂和欧亚水獭潜在分布区及重叠的比例
Table 2 The potential distribution areas of American mink and Eurasian otter and the proportion of overlap in Northeast China
省份 Province | 潜在分布区 Potential distribution (km2) | 重叠比例 Proportion of overlap | ||
---|---|---|---|---|
水貂 Mink | 水獭 Otter | 重叠区域 Overlapping region | ||
内蒙古 Inner Mongolia | 12,616.02 | 27,758.67 | 12,135.05 | 43.72% |
辽宁 Liaoning | 283.56 | 2,780.04 | 266.35 | 9.58% |
吉林 Jilin | 8,264.06 | 14,871.51 | 8,001.23 | 53.80% |
黑龙江 Heilongjiang | 40,780.93 | 38,180.71 | 30,141.58 | 78.94% |
总计 Total | 61,944.57 | 83,590.94 | 50,544.21 | 60.47% |
图3 基于主成分分析(PCA)的生态位重叠分析结果。 A: 所有环境背景值的主成分分析相关性, cos2值表示各个因子对结果的解释性, 高cos2值表示该变量在主成分上具有良好的解释性, 且指向终点越靠近圆周。B: 水貂和水獭的生态位重叠, 实线和虚线轮廓线分别显示了可用背景环境的100%和50%, 绿色为水獭占据的生态位, 红色为水貂占据的生态位, 紫色为两个物种生态位的重叠部分, Schoener’s D值为0.60。C-F: 单因子生态位分布特征,实线和虚线轮廓线分别显示了可用背景环境的100%和50%, 绿色为水獭占据的生态位, 红色为水貂占据的生态位, 紫色为两个物种生态位的重叠部分; 横坐标轴上方的色条中, 绿色为背景环境的50%中被水獭单独占据的区域, 红色为背景环境的50%中被水貂单独占据的区域, 蓝色为背景环境的50%中共同占据的区域。
Fig. 3 Niche overlap analysis results based on principal component analysis (PCA). A, Correlation circle of PCA of all environmental background values, cos2 value indicates the interpretation of each factor to the results, high cos2 value indicates that the variable has good interpretation on the principal component, and points closer to the circumference of the end point. B, The niche overlap of mink and otter. The solid and dotted lines show 100% and 50% of the available background environment, respectively. The green is the ecological niche occupied by otters, the red is the ecological niche occupied by minks, and the purple is the overlapped niche of the two species, with Schoener’s D value of 0.60. C-F, Single factor niche distribution characteristics, solid line and dotted line contour lines show 100% and 50% of available background environment, respectively, the green is the niche occupied by otters, the red is the niche occupied by minks, and the purple is the overlapping niche of the two species. In the color bar above the horizontal axis, the green is the area occupied by otter alone in 50% of the background environment, the red is the area occupied by mink alone in 50% of the background environment, and the blue is the area occupied jointly in 50% of the background environment.
[1] |
Aars J, Lambin X, Denny R, Griffin AC (2001) Water vole in the Scottish uplands: Distribution patterns of disturbed and pristine populations ahead and behind the American mink invasion front. Animal Conservation, 4, 187-194.
DOI URL |
[2] |
Abrams P (1980) Some comments on measuring niche overlap. Ecology, 61, 44-49.
DOI URL |
[3] |
Almeida Saá AC, Crivellaro MS, Winter BB, Pereira GR, Bercovich MV, Horta PA, Bastos EO, Schubert N (2020) Unraveling interactions: Do temperature and competition with native species affect the performance of the non-indigenous sun coral Tubastraea coccinea? Coral Reefs, 39, 99-117.
DOI URL |
[4] | Alves DFR, Barros-Alves SP, Dolabella SS, Almeida AC, Martinez PA (2021) Invasive shrimp Cinetorhynchus erythrostictus (Decapoda: Caridea) misidentified in the marine aquarium trade: Niche overlap with a native congeneric species. Estuarine, Coastal and Shelf Science, 258, 107411. |
[5] |
Banks PB, Norrdahl K, Nordström M, Korpimäki E (2004) Dynamic impacts of feral mink predation on vole metapopulations in the outer archipelago of the Baltic Sea. Oikos, 105, 79-88.
DOI URL |
[6] |
Basu N, Scheuhammer AM, Bursian SJ, Elliott J, Rouvinen-Watt K, Chan HM (2007) Mink as a sentinel species in environmental health. Environmental Research, 103, 130-144.
PMID |
[7] | Bell DA, Kovach RP, Muhlfeld CC, Al-Chokhachy R, Cline TJ, Whited DC, Schmetterling DA, Lukacs PM, Whiteley AR (2021) Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA. Science Advances, 7, eabj5471. |
[8] |
Bøhn T, Amundsen PA, Sparrow A (2008) Competitive exclusion after invasion? Biological Invasions, 10, 359-368.
DOI URL |
[9] |
Bonesi L, MacDonald DW (2004) Impact of released Eurasian otters on a population of American mink: A test using an experimental approach. Oikos, 106, 9-18.
DOI URL |
[10] |
Bonesi L, Palazon S (2007) The American mink in Europe: Status, impacts, and control. Biological Conservation, 134, 470-483.
DOI URL |
[11] |
Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.
DOI URL |
[12] |
Chanin PRF, Jefferies DJ (1978) The decline of the otter Lutra lutra L. in Britain: An analysis of hunting records and discussion of causes. Biological Journal of the Linnean Society, 10, 305-328.
DOI URL |
[13] |
Clode D, MacDonald DW (1995) Evidence for food competition between mink (Mustela vison) and otter (Lutra lutra) on Scottish Islands. Journal of Zoology, 237, 435-444.
DOI URL |
[14] |
Courchamp F, Chapuis JL, Pascal M (2003) Mammal invaders on islands: Impact, control and control impact. Biological Reviews, 78, 347-383.
PMID |
[15] |
Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787.
DOI URL |
[16] | Dunstone N, Birks JDS (1985) The comparative ecology of coastal, riverine and lacustrine mink Mustela vison in Britain. Zeitschrift für angewandte Zoologie, 72, 59-70. |
[17] |
Erlinge S (1967) Home range of the otter Lutra lutra L. in Southern Sweden. Oikos, 18, 186-209.
DOI URL |
[18] | García P, Ayres C, Mateos I (2009) Seasonal changes in American mink (Neovison vison) signs related to Eurasian otter (Lutra lutra) presence. Mammalia, 73, 253-256. |
[19] |
Grinnell J (1917) The niche-relationships of the California Thrasher. The Auk, 34, 427-433.
DOI URL |
[20] |
Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993-1009.
DOI PMID |
[21] |
Guo CB, Lek S, Ye SW, Li W, Liu JH, Li ZG (2015) Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecological Modelling, 306, 67-75.
DOI URL |
[22] | Guo WC, Yang ZK (1963) Mink farming. Xinjiang Agricultural Sciences, (12), 480-485. (in Chinese) |
[郭文场, 杨智奎 (1963) 水貂的养殖. 新疆农业科学, (12), 480-485.] | |
[23] |
Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends in Ecology & Evolution, 19, 470-474.
DOI URL |
[24] |
Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, Lohse L, Strandbygaard B, Jørgensen CS, Alfaro-Núñez A, Rosenstierne MW, Boklund A, Halasa T, Fomsgaard A, Belsham GJ, Bøtner A (2021) SARS-CoV-2 transmission between mink (Neovison vison) and humans, Denmark. Emerging Infectious Diseases, 27, 547-551.
DOI PMID |
[25] |
Harrington LA, Harrington AL, Yamaguchi N, Thom MD, Ferreras P, Windham TR, MacDonald DW (2009) The impact of native competitors on an alien invasive: Temporal niche shifts to avoid interspecific aggression. Ecology, 90, 1207-1216.
PMID |
[26] |
Jefferies DJ (1989) The changing otter population of Britain 1700-1989. Biological Journal of the Linnean Society, 38, 61-69.
DOI URL |
[27] | Jongman RHG, Braak CJFT, van Tongeren OFR (1995) Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge. |
[28] |
Keller RP, Geist J, Jeschke JM, Kühn I (2011) Invasive species in Europe: Ecology, status, and policy. Environmental Sciences Europe, 23, 23.
DOI URL |
[29] |
Kittinger JN, Houtan KSV, McClenachan LE, Lawrence AL (2013) Using historical data to assess the biogeography of population recovery. Ecography, 36, 868-872.
DOI URL |
[30] |
Li YM, Liu X, Li XP, Petitpierre B, Guisan A (2014) Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Global Ecology and Biogeography, 23, 1094-1104.
DOI URL |
[31] | Liu BY, Meng QB, Qi YL, Xu YC, Hua Y, Yang SH (2021) Use of mandible morphology to discriminate wild and farmed American minks. Chinese Journal of Wildlife, 42, 376-385. (in Chinese with English abstract) |
[刘博洋, 孟庆博, 祁永来, 徐艳春, 华彦, 杨淑慧 (2021) 利用下颌骨形态鉴别野生和饲养北美水貂的研究. 野生动物学报, 42, 376-385.] | |
[32] |
Liu X, Petitpierre B, Broennimann O, Li XP, Guisan A, Li YM (2017) Realized climatic niches are conserved along maximum temperatures among herpetofaunal invaders. Journal of Biogeography, 44, 111-121.
DOI URL |
[33] | Luo YM, Piao ZJ, Wang H, Wang C, Sui YC, Zeng FW, Luo YJ, Wang ZC (2012) Effect of invasive animals on rivers biodiversity in the Changbai Mountain Nature Reserve. Journal of Beihua University (Natural Science), 13, 578-580. (in Chinese with English abstract) |
[罗玉梅, 朴正吉, 王贺, 王超, 睢亚橙, 曾凡伟, 罗玉晶, 王卓聪 (2012) 长白山自然保护区入侵动物对河流生物多样性的影响. 北华大学学报(自然科学版), 13, 578-580.] | |
[34] | Lü J, Yang L, Yang L, Li JX, Huang MJ, Luan XF (2018) Potential distribution of otter in Northeast China. Journal of Fujian Agriculture and Forestry University (Natural Science), 47, 473-479. (in Chinese with English abstract) |
[吕江, 杨立, 杨蕾, 李婧昕, 黄木娇, 栾晓峰 (2018) 中国东北地区水獭种群潜在分布区的预测. 福建农林大学学报(自然科学版), 47, 473-479.] | |
[35] |
Nordström M, Korpimäki E (2004) Effects of island isolation and feral mink removal on bird communities on small islands in the Baltic Sea. Journal of Animal Ecology, 73, 424-433.
DOI URL |
[36] | Perrings C, Burgiel S, Lonsdale M, Mooney H, Williamson M (2010) International cooperation in the solution to trade-related invasive species risks. Annals of the New York Academy of Sciences, 1195, 198-212. |
[37] | Piao ZJ, Sui YC, Wang Q, Li Z, Niu LJ (2011) Population fluctuation and resource protection of otter (Lutra lutra) in Changbai Mountain Nature Reserve. Journal of Hydroecology, 32, 115-120. (in Chinese with English abstract) |
[朴正吉, 睢亚橙, 王群, 李卓, 牛丽君 (2011) 长白山自然保护区水獭种群数量变动与资源保护. 水生态学杂志, 32, 115-120.] | |
[38] |
Previtali A, Cassini MH, MacDonald DW (1998) Habitat use and diet of the American mink (Mustela vison) in Argentinian Patagonia. Journal of Zoology, 246, 482-486.
DOI URL |
[39] |
Qiao HJ, Escobar LE, Peterson AT (2017) Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports, 7, 1213.
DOI PMID |
[40] | Qin L (2009) Statistical Ecology. China Forestry Publishing House, Beijing. (in Chinese) |
[覃林 (2009) 统计生态学. 中国林业出版社, 北京.] | |
[41] |
Robitaille J, Laurence S (2002) Otter, Lutra lutra, occurrence in Europe and in France in relation to landscape characteristics. Animal Conservation, 5, 337-344.
DOI URL |
[42] |
Russell JC, Sataruddin NS, Heard AD (2014) Over-invasion by functionally equivalent invasive species. Ecology, 95, 2268-2276.
PMID |
[43] |
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
DOI PMID |
[44] |
Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408-418.
DOI URL |
[45] |
Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435.
DOI PMID |
[46] |
Sepúlveda MA, Singer RS, Silva-Rodríguez EA, Eguren A, Stowhas P, Pelican K (2014) Invasive American mink: Linking pathogen risk between domestic and endangered carnivores. EcoHealth, 11, 409-419.
DOI PMID |
[47] |
Swancutt M, Chorba T (2021) SARS-CoV-2, mannerism, marten, mink, and man. Emerging Infectious Diseases, 27, 2003.
DOI URL |
[48] | Tang Y, Winkler JA, Viña A, Wang F, Zhang JD, Zhao ZQ, Connor T, Yang HB, Zhang YB, Zhang XF, Li XH, Liu JG (2020) Expanding ensembles of species present-day and future climatic suitability to consider the limitations of species occurrence data. Ecological Indicators, 110, 105891. |
[49] |
Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347-357.
DOI URL |
[50] |
Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
DOI URL |
[51] |
Wintle BA, McCarthy MA, Volinsky CT, Kavanagh RP (2003) The use of Bayesian model averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 1579-1590.
DOI URL |
[52] |
Zabala J, Zuberogoitia I, Martínez-Climent JA (2007) Winter habitat preferences of feral American mink Mustela vison in Biscay, Northern Iberian Peninsula. Acta Theriologica, 52, 27-36.
DOI URL |
[53] |
Zhang C, Chen MH, Yang L, Zhuang HF, Wu SH, Zhan ZJ, Wang JD, Luan XF (2022) Distribution pattern and identification of conservation priority areas of the otter in Northeast China. Biodiversity Science, 30, 21157. (in Chinese with English abstract)
DOI |
[张超, 陈敏豪, 杨立, 庄鸿飞, 武曙红, 湛振杰, 王嘉栋, 栾晓峰 (2022) 东北地区水獭分布格局与保护优先区识别. 生物多样性, 30, 21157.]
DOI |
|
[54] |
Zhang L, Rohr J, Cui RN, Xin YS, Han LX, Yang XN, Gu SM, Du YB, Liang J, Wang XY, Wu ZJ, Hao Q, Liu X (2022) Biological invasions facilitate zoonotic disease emergences. Nature Communications, 13, 1762.
DOI PMID |
[55] |
Zhang L, Wang QY, Yang L, Li F, Chan BPL, Xiao ZS, Li S, Song DZ, Piao ZJ, Fan PF (2018) The neglected otters in China: Distribution change in the past 400 years and current conservation status. Biological Conservation, 228, 259-267.
DOI URL |
[56] |
Zhang R, Yang L, Laguardia A, Jiang Z, Huang MJ, Lü J, Ren YH, Zhang W, Luan XF (2016) Historical distribution of the otter (Lutra lutra) in north-east China according to historical records (1950-2014). Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 602-606.
DOI URL |
[1] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[2] | 湛振杰, 张超, 陈敏豪, 王嘉栋, 富爱华, 范雨薇, 栾晓峰. 基于DNA宏条形码技术的大兴安岭北部欧亚水獭冬季食性分析[J]. 生物多样性, 2023, 31(6): 22586-. |
[3] | 肖巍峰, 左绿荇, 杨文涛, 李朝奎. 基于地理环境相似度的长江经济带入侵物种虚拟负样本生成方法[J]. 生物多样性, 2023, 31(1): 22094-. |
[4] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[5] | 陈小红, 陈浩杰, 王雅竹, 肖书礼, 衡小琴, 赵安玖. 濒危植物峨眉含笑的种内、种间竞争[J]. 生物多样性, 2022, 30(11): 22003-. |
[6] | 张超, 陈敏豪, 杨立, 庄鸿飞, 武曙红, 湛振杰, 王嘉栋, 栾晓峰. 东北地区水獭分布格局与保护优先区识别[J]. 生物多样性, 2022, 30(1): 21157-. |
[7] | 韩雪松, 董正一, 赵格, 赵翔, 史湘莹, 吕植, 李宏奇. 基于视频监控系统的欧亚水獭活动节律初报及红外相机监测效果评估[J]. 生物多样性, 2021, 29(6): 770-779. |
[8] | 王剑, 董乙乂, 马丽滨, 潘勃, 马方舟, 丁晖, 胡亚萍, 彭艳琼, 吴孝兵, 王波. 西双版纳国家级自然保护区蚂蚁-树互作网络空间变异[J]. 生物多样性, 2020, 28(6): 695-706. |
[9] | 李萌, 尉婷婷, 史博洋, 郝希阳, 徐海根, 孙红英. |
[10] | 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849. |
[11] | 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国. 荒漠草原“土岛”生境群落物种共存机制[J]. 生物多样性, 2018, 26(7): 667-677. |
[12] | 徐开达, 卢衎尔, 卢占晖, 戴乾. 韭山列岛自然保护区虾类优势种生态位[J]. 生物多样性, 2018, 26(6): 601-610. |
[13] | 肖兰, 张琳婷, 杨盛昌, 郑志翰, 姜德刚. 厦门近岸海域无居民海岛植物区系和物种组成相似性[J]. 生物多样性, 2018, 26(11): 1212-1222. |
[14] | 李飞, 郑玺, 张华荣, 杨剑焕, 陈辈乐. 广东省珠海市近海诸岛水獭现状与保护建议[J]. 生物多样性, 2017, 25(8): 840-846. |
[15] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn