生物多样性 ›› 2024, Vol. 32 ›› Issue (4): 23378. DOI: 10.17520/biods.2023378 cstr: 32101.14.biods.2023378
所属专题: 美丽中国建设
曲锐1, 左振君1, 王有鑫2, 张良键1, 吴志刚3, 乔秀娟4, 王忠1,2,*()(
)
收稿日期:
2023-10-09
接受日期:
2024-02-20
出版日期:
2024-04-20
发布日期:
2024-04-08
通讯作者:
* E-mail: 基金资助:
Rui Qu1, Zhenjun Zuo1, Youxin Wang2, Liangjian Zhang1, Zhigang Wu3, Xiujuan Qiao4, Zhong Wang1,2,*()(
)
Received:
2023-10-09
Accepted:
2024-02-20
Online:
2024-04-20
Published:
2024-04-08
Contact:
* E-mail: 摘要:
生态位作为解决群落如何构建、物种如何共存的探索, 从其最初定性描述物种在生境中的空间分割, 到反映物种在群落中功能上的分异, 再到从多维空间和资源利用等方面进行的定量分析, 生态位理论逐渐发展。然而, 在非随机过程影响下物种生态位的大小, 尤其是在不同环境条件下生态位的位移、收缩或扩张等变化过程的量化, 需要进一步研究。元素是组成生物有机体的基本物质, 生物体内元素含量及其比例(元素组, elementome)具有物种特异性, 同时也反映了物种对其生存环境的适应性。随着生态化学计量学的发展, 生物元素组在生态学各个研究尺度中的应用愈加广泛。在群落生态学研究中, 生物元素组及其在环境梯度上的变异为量化群落中物种生态位分化、预测环境变化条件下生态位的变化提供了极佳指标。生物地球化学生态位使用生物元素组及生态位多维超体积的概念, 对物种生态位进行了量化。基于文献检索结果, 本文阐述了生物地球化学生态位假说的理论框架, 对其在不同生物分类群(植物、动物和微生物)中的研究进展进行了综述, 最后对其在不同生态系统中的研究进行了展望, 以期对该假说的适用性进行检验并推动生态位理论研究的发展。
曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠 (2024) 基于元素组的生物地球化学生态位及其在不同生态系统中的应用. 生物多样性, 32, 23378. DOI: 10.17520/biods.2023378.
Rui Qu, Zhenjun Zuo, Youxin Wang, Liangjian Zhang, Zhigang Wu, Xiujuan Qiao, Zhong Wang (2024) The biogeochemical niche based on elementome and its applications in different ecosystems. Biodiversity Science, 32, 23378. DOI: 10.17520/biods.2023378.
图1 生物地球化学生态位假说示意图, 引自Peñuelas等(2019), 原图已获授权使用。物种间生物地球化学差异的理论分布取决于: (1)它们之间的分类和系统发育距离; (2)生境重叠度(物种在其相应分布区域的重叠频率)和(3)物种响应环境(如气候、土壤类型等)变化的内稳性/可塑性。图中的面表示由系统发育距离和物种分布区域的重叠频率产生的生物地球化学距离, 棕色和蓝色箭头表示由可变当前环境条件(例如气候、土壤特征、相邻物种)引起的生物地球化学生态位(BN)距离的正负残差。
Fig. 1 Diagram of biogeochemical niche hypothesis, modified from Peñuelas et al (2019), authorized by Ecology. Theoretical distribution of the biogeochemical differences between species as a function of (1) the taxonomic and phylogenetic distances between them, (2) the level of sympatry (overlap frequency in their corresponding areas of distribution), and (3) the homeostatic or flexible response to current environmental conditions (e.g., climate, soil traits). The surface represents the biogeochemical distance resulting from phylogenetic distance and level of sympatry, and the brown and blue arrows the positive and negative residuals of the biogeochemical niche (BN) distance induced by variable current environmental conditions (e.g., climate, soil traits, neighbors).
图2 自2008年以来有关生物地球化学生态位研究的论文发表数量。橙色表示Peñuelas等首次提出生物地球化学生态位以及对生物地球化学生态位理论进行系统阐述的两篇文章出版时间。
Fig. 2 Number of published articles focusing on biogeochemical niche since 2008. The orange column represents the published year of the two articles of Peñuelas et al (2008) and Peñuelas et al (2019). Peñuelas et al (2008) first proposed the biogeochemical niche, while Peñuelas et al (2019) elaborated the hypothesis.
图3 自2008年以来有关生物地球化学生态位研究的关键词共现图。节点的大小表示共现频率。
Fig. 3 The co-occurrence knowledge map of keywords from the studies on biogeochemical niche since 2008. The size of the node represents the frequency of the words being used as keywords in published article.
[1] | Abramov SM, Straub D, Tejada J, Grimm L, Schädler F, Bulaev A, Thorwarth H, Amils R, Kappler A, Kleindienst S (2022) Biogeochemical niches of Fe-cycling communities influencing heavy metal transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 88, e0229021. |
[2] |
Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology, 87, 50-61.
PMID |
[3] | Ågren GI (1988) Ideal nutrient productivities and nutrient proportions in plant-growth. Plant Cell and Environment, 11, 613-620. |
[4] | Ågren GI (2004) The C : N : P stoichiometry of autotrophs: Theory and observations. Ecology Letters, 7, 185-191. |
[5] | Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics, 39, 153-170. |
[6] |
Ågren GI, Weih M (2012) Plant stoichiometry at different scales: Element concentration patterns reflect environment more than genotype. New Phytologist, 194, 944-952.
DOI PMID |
[7] | Ågren GI, Weih M (2020) Multi-dimensional plant element stoichiometry—Looking beyond carbon, nitrogen, and phosphorus. Frontiers in Plant Science, 11, 23. |
[8] | Andrieux B, Signor J, Guillou V, Danger M, Jabot F (2021) Body stoichiometry of heterotrophs: Assessing drivers of interspecific variations in elemental composition. Global Ecology and Biogeography, 4, 883-895. |
[9] | Atkinson CL, van Ee BC, Pfeiffer JM (2020) Evolutionary history drives aspects of stoichiometric niche variation and functional effects within a guild. Ecology, 101, e03100. |
[10] | Barré P, Berger G, Velde B (2009) How element translocation by plants may stabilize illitic clays in the surface of temperate soils. Geoderma, 151, 22-30. |
[11] | Bartrons M, Sardans J, Hoekman D, Peñuelas J (2018) Trophic transfer from aquatic to terrestrial ecosystems: A test of the biogeochemical niche hypothesis. Ecosphere, 9, e02338. |
[12] | Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007-1012. |
[13] |
Bell G (2000) The distribution of abundance in neutral communities. The American Naturalist, 155, 606-617.
DOI PMID |
[14] |
Camp EF, Nitschke MR, Clases D, de Vega RG, Reich HG, Goyen S, Suggett DJ (2022) Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC Plant Biology, 22, 184.
DOI PMID |
[15] |
Carnicer J, Sardans J, Stefanescu C, Ubach A, Bartrons M, Asensio D, Peñuelas J (2015) Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances. Journal of Plant Physiology, 172, 82-91.
DOI PMID |
[16] |
Cease AJ, Elser JJ, Ford CF, Hao SG, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 335, 467-469.
DOI PMID |
[17] | Chase JM, Leibold MA (2003) Ecological Niches:Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. |
[18] | Chimphango SBM, Potgieter G, Cramer MD (2015) Differentiation of the biogeochemical niches of legumes and non-legumes in the Cape Floristic Region of South Africa. Plant Ecology, 216, 1583-1595. |
[19] | Connor EF, Simberloff D (1979) The assembly of species communities: Chance or competition? Ecology, 60, 1132-1140. |
[20] |
de la Riva EG, Marañón T, Violle C, Villar R, Pérez-Ramos IM (2017) Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Frontiers in Plant Science, 8, 1242.
DOI PMID |
[21] | Diamond JM (1975) Assembly of species communities. Ecology and Evolution of Communities, 342-344. |
[22] | Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122. |
[23] | Elton CC (1927) Animal ecology. Nature, 119, 193-193. |
[24] | Elser JJ (2006) Biological stoichiometry: A chemical bridge between ecosystem ecology and evolutionary biology. The American Naturalist, 168, 25-35. |
[25] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[26] | Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: Theory, observations, and consequences. Ecology, 80, 735-751. |
[27] | Fernández-Martínez M (2022) From atoms to ecosystems: Elementome diversity meets ecosystem functioning. New Phytologist, 234, 35-42. |
[28] | Fernández-Martínez M, Preece C, Corbera J, Cano O, Garcia-Porta J, Sardans J, Janssens IA, Sabater F, Peñuelas J (2021) Bryophyte C : N : P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecology Letters, 24, 1375-1386. |
[29] |
Filipiak M, Woyciechowski M, Czarnoleski M (2021) Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon. Scientific Reports, 11, 652.
DOI PMID |
[30] |
Frade PR, Glasl B, Matthews SA, Mellin C, Serrão EA, Wolfe K, Mumby PJ, Webster NS, Bourne DG (2020) Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 3, 442.
DOI PMID |
[31] | Furey GN, Tilman D (2023) Plant chemical traits define functional and phylogenetic axes of plant biodiversity. Ecology Letters, 26, 1394-1406. |
[32] | Gao YQ, Yuan Y, Li QK, Kou L, Fu XL, Dai XQ, Wang HM (2021) Mycorrhizal type governs foliar and root multi- elemental stoichiometries of trees mainly via root traits. Plant and Soil, 460, 229-246. |
[33] | Gaston KJ, Chown SL (2005) Neutrality and the niche. Functional Ecology, 19, 1-6. |
[34] |
Gause GF (1934) Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science, 79, 16-17.
PMID |
[35] | González AL, Céréghino R, Dézerald O, Farjalla VF, Leroy C, Richardson BA, Richardson MJ, Romero GQ, Srivastava DS (2018) Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Functional Ecology, 10, 2448-2463. |
[36] | González AL, Dézerald O, Marquet PA, Romero GQ, Srivastava DS (2017) The multidimensional stoichiometric niche. Frontiers in Ecology and Evolution, 5, 110. |
[37] | Grima AJ, Clases D, de Vega RG, Nitschke MR, Goyen S, Suggett DJ, Camp EF (2022) Species-specific elementomes for scleractinian coral hosts and their associated Symbiodiniaceae. Coral Reefs, 41, 1115-1130. |
[38] | Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255-260. |
[39] | Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[40] | Grinnell J (1917) The niche-relationships of the California thrasher. The Auk, 34, 427-433. |
[41] | Guo LZ, Li JH, He W, Liu L, Huang D, Wang K (2019) High nutrient uptake efficiency and high water use efficiency facilitate the spread of Stellera chamaejasme L. in degraded grasslands. BMC Ecology, 19, 50. |
[42] |
Güsewell S (2004) N : P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[43] |
Han WX, Fang JY, Reich PB, Ian Woodward FI, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[44] | Harpole WS, Tilman D (2005) Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15-23. |
[45] | Hayes CT, Fitzsimmons JN, Jensen LT, Lanning NT, Hatta M, McGee D, Boyle EA (2020) A Lagrangian view of trace elements and isotopes in the North Pacific. Journal of Geophysical Research: Oceans, 125, e2019JC015862. |
[46] | He JS, Han XG (2010) Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese with English abstract) |
[贺金生, 韩兴国 (2010) 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[47] | He P, Fontana S, Sardans J, Peñuelas J, Gessler A, Schaub M, Rigling A, Li H, Jiang Y, Li MH (2019) The biogeochemical niche shifts of Pinus sylvestris var. mongolica along an environmental gradient. Environmental and Experimental Botany, 167, 103825. |
[48] | Holt RD (1987) On the relation between niche overlap and competition: The effect of incommensurable niche dimensions. Oikos, 48, 110-114. |
[49] | Hu MJ, Peñuelas J, Sardans J, Sun ZG, Wilson BJ, Huang JF, Zhu QL, Tong C (2018) Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China Sea: Implications for biogeochemical niche. Plant and Soil, 431, 273-288. |
[50] | Hubbell SP (2001) The Unified Ueutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[51] | Hubbell SP (2006) The neutral theory and evolution of ecological equivalence. Ecology, 87, 1387-1398. |
[52] | Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. |
[53] | Jackson LJ, Rasmussen JB, Peters RH, Kalff J (1991) Empirical relationships between the element composition of aquatic macrophytes and their underlying sediments. Biogeochemistry, 12, 71-86. |
[54] | Keddy PA, Nielsen K, Weiher E, Lawson R (2002) Relative competitive performance of 63 species of terrestrial herbaceous plants. Journal of Vegetation Science, 13, 5-16. |
[55] | Keddy PA (1992) Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164. |
[56] |
Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI PMID |
[57] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[58] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[59] | Marler TE (2019) Late successional tree species in Guam create biogeochemical niches. Communicative & Integrative Biology, 12, 86-90. |
[60] | Marschner P (2012) Marschner’s Mineral Nutrition of Higher Plants. Academic Press, London. |
[61] | Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730-2738. |
[62] | Niu KC, Feng F, Xu Q, Zhang S (2019) Impoverished soil supports more plateau pika through lowered diversity of plant functional traits in Tibetan alpine meadows. Agriculture, Ecosystems & Environment, 285, 106621. |
[63] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[64] | Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao SL, Obersteiner M, Vicca S, Janssens IA, Sardans J (2019) The bioelements, the elementome, and the biogeochemical niche. Ecology, 100, e02652. |
[65] | Peñuelas J, Sardans J (2021) Developing holistic models of the structure and function of the soil/plant/atmosphere continuum. Plant and Soil, 461, 29-42. |
[66] | Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets Ü (2010) Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16, 2171-2185. |
[67] | Peñuelas J, Sardans J, Llusia J, Silva J, Owen SM, Bala-Olà B, Linatoc AC, Dalimin MN, Niinemets Ü (2013) Foliar chemistry and standing folivory of early and late-successional species in a Bornean rainforest. Plant Ecology & Diversity, 6, 245-256. |
[68] | Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish Journal of Ecology, 56, 613-622. |
[69] | Radice VZ, Fry B, Brown KT, Dove S, Hoegh-Guldberg O (2022) Biogeochemical niches and trophic plasticity of shallow and mesophotic corals recovering from mass bleaching. Limnology and Oceanography, 67, 1617-1630. |
[70] | Redfield AC (1960) The biological control of chemical factors in the environment. Science Progress, 46, 205-221. |
[71] | Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA, 101, 11001-11006. |
[72] | Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277, 877-883. |
[73] | Sardans J, Alonso R, Carnicer J, Fernández-Martínez M, Vivanco MG, Peñuelas J (2016a) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology Evolution and Systematics, 18, 52-69. |
[74] | Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, Fernández-Martínez M, Sanders TGM, Peñuelas J (2016b) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Functional Ecology, 30, 676-689. |
[75] |
Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HYH, Peñuelas J (2017) Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23, 1282-1291.
DOI PMID |
[76] | Sardans J, Janssens IA, Alonso R, Veresoglou SD, Rillig MC, Sanders TGM, Carnicer J, Filella I, Farré-Armengol G, Peñuelas J (2015) Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography, 24, 240-255. |
[77] | Sardans J, Janssens IA, Ciais P, Obersteiner M, Peñuelas J (2021a) Recent advances and future research in ecological stoichiometry. Perspectives in Plant Ecology, Evolution and Systematics, 50, 125611. |
[78] | Sardans J, Lambers H, Preece C, Alrefaei AF, Penuelas J (2023) Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? The Plant Journal, 114, 1227-1242. |
[79] |
Sardans J, Peñuelas J (2014) Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: The optimum “biogeochemical niche”. Plant Ecology, 215, 441-455.
PMID |
[80] | Sardans J, Peñuelas J, Coll M, Vayreda J, Rivas-Ubach A (2012) Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Functional Ecology, 26, 1077-1089. |
[81] | Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262, 2024-2034. |
[82] | Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Peguero G, Gargallo-Garriga A, Ciais P, Janssens IA, Obersteiner M, Richter A, Peñuelas J (2021b) Empirical support for the biogeochemical niche hypothesis in forest trees. Nature Ecology & Evolution, 5, 184-194. |
[83] | Schimel DS (2003) All life is chemical. BioScience, 53, 521-524. |
[84] | Sherman F, Kuselman I (1999) Stoichiometry and chemical metrology: Karl Fischer reaction. Accreditation and Quality Assurance, 4, 230-234. |
[85] | Silvertown J (2004) Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[86] | Silkin V, Pautova L, Podymov O, Chasovnikov V, Lifanchuk A, Fedorov A, Kluchantseva A (2023) Phytoplankton dynamics and biogeochemistry of the Black Sea. Journal of Marine Science and Engineering, 11, 1196 |
[87] | Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015) Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124, 949-959. |
[88] |
Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist, 196, 68-78.
DOI PMID |
[89] | Sobczyk Ł, Filipiak M, Czarnoleski M (2020) Sexual dimorphism in the multielemental stoichiometric phenotypes and stoichiometric niches of spiders. Insects, 11, 484. |
[90] | Somda ZC, McLaurin WJ, Kays SJ (1999) Jerusalem artichoke growth, development, and field storage. II. Carbon and nutrient element allocation and redistribution. Journal of Plant Nutrition, 22, 1315-1334. |
[91] | Sterner RW, Elser JJ (2002) Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[92] | Strong DR (1983) Natural variability and the manifold mechanisms of ecological communities. The American Naturalist, 122, 636-660. |
[93] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ (2018) Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA, 115, 4033-4038. |
[94] |
Tian D, Yan ZB, Fang JY (2021) Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713. (in Chinese with English abstract)
DOI |
[田地, 严正兵, 方精云 (2021) 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[95] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302 |
[96] | Urbina I, Sardans J, Grau O, Beierkuhnlein C, Jentsch A, Kreyling J, Peñuelas J (2017) Plant community composition affects the species biogeochemical niche. Ecosphere, 8, e01801. |
[97] | Vallicrosa H, Sardans J, Maspons J, Zuccarini P, Fernández-Martínez M, Bauters M, Goll DS, Ciais P, Obersteiner M, Janssens IA, Peñuelas J (2022) Global maps and factors driving forest foliar elemental composition: The importance of evolutionary history. New Phytologist, 233, 169-181. |
[98] | Volkov I, Banavar JR, He FL, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658-661. |
[99] | Wang Z, Xia CX, Yu D, Wu ZG (2015) Low-temperature induced leaf elements accumulation in aquatic macrophytes across Tibetan Plateau. Ecological Engineering, 75, 1-8. |
[100] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[101] | Wilson JB, Gitay H (1995) Limitations to species coexistence: Evidence for competition from field observations, using a patch model. Journal of Vegetation Science, 6, 369-376. |
[102] | Wilson RP, McMahon CR, Quintana F, Frere E, Scolaro A, Hays GC, Bradshaw CJA (2011) N-dimensional animal energetic niches clarify behavioural options in a variable marine environment. Journal of Experimental Biology, 214, 646-656. |
[103] | Xia CX, Yu D, Wang Z, Xie D (2014) Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecological Engineering, 70, 406-413. |
[104] | Xing KX, Zhao MF, Niinemets Ü, Niu SL, Tian J, Jiang Y, Chen HYH, White PJ, Guo DL, Ma ZQ (2021) Relationships between leaf carbon and macronutrients across woody species and forest ecosystems highlight how carbon is allocated to leaf structural function. Frontiers in Plant Science, 12, 674932. |
[105] | Xing W, Wu HP, Hao BB, Liu H, Liu GH (2017) Trace element stoichiometry of submerged macrophytes in Yangtze floodplain lakes and Yunnan plateau lakes (China). Aquatic Sciences, 79, 89-98. |
[106] | Yan P, Li M, Yu G, Qi Y, He N (2022) Plant community traits associated with nitrogen can predict spatial variability in productivity. Ecological Indicators, 140, 109001. |
[107] |
Yan ZB, Han WX, Peñuelas J, Sardans J, Elser JJ, Du EZ, Reich PB, Fang JY (2016) Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 19, 1237-1246.
DOI PMID |
[108] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010) Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI PMID |
[109] |
Yu Q, Wilcox K, La Pierre K, Knapp AK, Han X, Smith MD (2015) Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
PMID |
[110] | Zeng DH, Chen GS (2005) Ecological stoichiometry: A science to explore the complexity of living systems. Chinese Journal of Plant Ecology, 29, 1007-1009. (in Chinese with English abstract) |
[曾德慧, 陈广生 (2005) 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
DOI |
|
[111] | Zhang B, Chen HZ, Deng MQ, Li JY, González AL, Wang SP (2022) High dimensionality of stoichiometric niches in soil fauna. Ecology, 103, e3741. |
[112] | Zhao N, Liu HM, Wang QF, Wang RL, Xu ZW, Jiao CC, Zhu JX, Yu GR, He NP (2018) Root elemental composition in Chinese forests: Implications for biogeochemical niche differentiation. Functional Ecology, 32, 40-49. |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[3] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[4] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[5] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[6] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[7] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[8] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[9] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[10] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[11] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[12] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[13] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[14] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[15] | 李治霖, 多立安, 李晟, 王天明. 陆生食肉动物竞争与共存研究概述[J]. 生物多样性, 2021, 29(1): 81-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn