生物多样性 ›› 2015, Vol. 23 ›› Issue (2): 157-166. DOI: 10.17520/biods.2014007
所属专题: 物种形成与系统进化
• 研究报告: 热带亚热带森林大样地群落结构与格局 • 上一篇 下一篇
姚蓓1, 余建平2, 刘晓娟1, 米湘成1,*(), 马克平1
收稿日期:
2014-01-08
接受日期:
2014-05-09
出版日期:
2015-03-20
发布日期:
2015-04-09
通讯作者:
米湘成
基金资助:
Bei Yao1, Jianping Yu2, Xiaojuan Liu1, Xiangcheng Mi1,*(), Keping Ma1
Received:
2014-01-08
Accepted:
2014-05-09
Online:
2015-03-20
Published:
2015-04-09
Contact:
Mi Xiangcheng
摘要:
种子的特征如种子的重量、大小和传播方式直接影响物种的扩散能力, 从而影响物种空间分布的聚集强度。作者以古田山亚热带常绿阔叶林24 ha样地中89种木本植物为研究对象, 分析了它们的种子大小、重量和扩散方式与物种聚集强度的关系。结果表明: 在20 m范围内, 样地内90%的物种为聚集分布, 聚集强度随着尺度的增大而减弱, 稀有种的聚集强度大于常见种。用系统发育独立比较(phylogenetically independent contrasts)方法排除了系统发育影响后, 物种的多度与聚集强度呈显著相关(在15 m尺度, R2 = 0.32, P < 0.001); 种子大小与物种聚集强度的相关性较弱(R2 = 0.05, P < 0.05), 而种子重量与物种聚集强度之间的相关性相对较强(R2 = 0.14, P < 0.05)。种子的传播方式显著地影响物种的聚集强度: 无助力扩散物种的聚集强度显著地高于有助力扩散物种的聚集强度(F1, 87= 4.439, P = 0.038), 即长距离扩散导致物种的聚集强度减弱。可见, 在亚热带森林中, 种子性状通过影响种子扩散进而引起物种聚集强度的变化, 是影响物种空间分布格局的重要生态因素。
姚蓓, 余建平, 刘晓娟, 米湘成, 马克平 (2015) 亚热带常绿阔叶林种子性状对木本植物聚集格局的影响. 生物多样性, 23, 157-166. DOI: 10.17520/biods.2014007.
Bei Yao, Jianping Yu, Xiaojuan Liu, Xiangcheng Mi, Keping Ma (2015) Effect of seed traits on spatial aggregation of trees in a subtropical evergreen broad-leaved forest. Biodiversity Science, 23, 157-166. DOI: 10.17520/biods.2014007.
扩散方式 Dispersal syndrome | 果实类型 Fruit type | 传播者 Disperser | 物种数 No. of species | 比例 % |
---|---|---|---|---|
喷射扩散 Ballistic dispersal | 开裂蒴果 Explosive capsule | 无 No | 4 | 4.49 |
风力扩散 Wind dispersal | 蒴果、荚果、翅果 Capsule, pod, and winged nut | 风力 Wind | 15 | 16.85 |
动物扩散 Animal dispersal | ||||
A1 (< 6 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 36 | 40.45 |
A2 (6-12 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 23 | 25.84 |
A3 (>12 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 11 | 12.40 |
表1 不同扩散方式中种子或果实的性状
Table 1 Seed or fruit characteristics of species within each dispersal syndrome
扩散方式 Dispersal syndrome | 果实类型 Fruit type | 传播者 Disperser | 物种数 No. of species | 比例 % |
---|---|---|---|---|
喷射扩散 Ballistic dispersal | 开裂蒴果 Explosive capsule | 无 No | 4 | 4.49 |
风力扩散 Wind dispersal | 蒴果、荚果、翅果 Capsule, pod, and winged nut | 风力 Wind | 15 | 16.85 |
动物扩散 Animal dispersal | ||||
A1 (< 6 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 36 | 40.45 |
A2 (6-12 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 23 | 25.84 |
A3 (>12 mm) | 浆果、核果、蒴果 Berry, drupe, and capsule | 动物 Animal | 11 | 12.40 |
尺度 r (m) | 聚集分布 Aggregated distribution | 随机分布 Random distribution | 规则分布 Regular distribution |
---|---|---|---|
(0, 5] | 94% | 6% | 0 |
(5, 10] | 95% | 5% | 0 |
(10, 15] | 94% | 6% | 0 |
(15, 20] | 92% | 8% | 0 |
表2 古田山24 ha森林动态监测样地不同尺度上分布格局呈显著聚集分布的树种的百分比
Table 2 The proportion of tree species with significantly aggregated distribution pattern in 24-ha Gutianshan Forest Dynamics Plot at different scales
尺度 r (m) | 聚集分布 Aggregated distribution | 随机分布 Random distribution | 规则分布 Regular distribution |
---|---|---|---|
(0, 5] | 94% | 6% | 0 |
(5, 10] | 95% | 5% | 0 |
(10, 15] | 94% | 6% | 0 |
(15, 20] | 92% | 8% | 0 |
图1 古田山24 ha森林动态监测样地中具有不同种子传播方式的4个树种的空间分布
Fig. 1 Spatial distribution maps of four species with different seed distribution modes in 24-ha Gutianshan Forest Dynamics Plot
参数 Parameters | K | P |
---|---|---|
Log (seed size) | 0.549 | 0.001 |
Log (seed mass) | 0.657 | 0.001 |
Log (species abundance) | 0.216 | 0.001 |
g(r = 5) | 0.372 | 0.070 |
g(r = 10) | 0.423 | 0.028 |
g(r = 15) | 0.454 | 0.017 |
g(r = 20) | 0.363 | 0.007 |
g(r = 25) | 0.224 | 0.051 |
g(r = 30) | 0.144 | 0.227 |
表3 古田山24 ha森林动态监测样地中种子性状和其他参数的系统发育信号分析
Table 3 Phylogenetic signal analysis of seed traits and other parameters in 24-ha Gutianshan Forest Dynamics Plot
参数 Parameters | K | P |
---|---|---|
Log (seed size) | 0.549 | 0.001 |
Log (seed mass) | 0.657 | 0.001 |
Log (species abundance) | 0.216 | 0.001 |
g(r = 5) | 0.372 | 0.070 |
g(r = 10) | 0.423 | 0.028 |
g(r = 15) | 0.454 | 0.017 |
g(r = 20) | 0.363 | 0.007 |
g(r = 25) | 0.224 | 0.051 |
g(r = 30) | 0.144 | 0.227 |
图3 物种多度和聚集强度在5 m或15 m范围内的关系。上面两图表示5 m尺度范围; 下面两图表示15 m尺度范围。左侧两图未考虑系统发育信号; 右侧两图用PIC方法排除了系统发育信号。
Fig. 3 The relationships between species abundance and aggregation intensity within ranges of 5 meters or 15 meters. The upper panels show relationships between species abundance and aggregation intensity in 5 meters, and the lower panels show relationships in 15 meters. The left panels show relationships between species abundance and aggregation intensity without considering phylogenetic relationship among species. The right panels show relationships between species abundance and aggregation intensity after accounting for the phylogenetic relationship among species.
图5 不同扩散方式的树种在5 m范围内平均聚集强度的变化(平均值± SD)。(a)图所示5种扩散方式的物种间聚集强度无显著差异(F4, 84 = 1.497, P = 0.21); (b)图显示聚集强度在无助力扩散物种和有助力扩散物种这两组扩散方式间差异显著(F1, 87 = 4.439, P = 0.038)。A1: 动物扩散< 6 mm; A2: 动物扩散6-12 mm之间; A3: 动物扩散> 12 mm; B: 喷射扩散(无助力扩散); W: 风力扩散; A: 有助力扩散。
Fig. 5 The variation of mean aggregation intensity of tree species among dispersal syndromes at 5 m scale (mean ± SD). The left panel (a) shows that aggregation intensity is not significantly different among five dispersal syndromes (F4, 84 = 1.497, P = 0.21), while the right panel (b) shows that aggregation intensity is significantly different between two dispersal syndromes (ballistically dispersed species vs assisted dispersal species) (F1, 87 = 4.439, P = 0.038). A1, Animal dispersal, < 6 mm; A2, Animal dispersal, 6-12 mm; A3, Animal dispersal, > 12 mm; B, Ballistic; W, Wind dispersal; A, Assisted-dispersal.
1 | Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns.Journal of Statistical Software, 12(6), 1-42. |
2 | Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile.Evolution, 57, 717-745. |
3 | Cale WG, Henebry GM, Yeakley JA (1989) Inferring process from pattern in natural communities.BioScience, 39, 600-606. |
4 | Clark JS, LaDeau S, Ibanez I (2004) Fecundity of trees and the colonization-competition hypothesis.Ecological Monographs, 74, 415-442. |
5 | Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests.Ecological Monographs, 68, 213-235. |
6 | Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests.Ecology, 80, 1475-1494. |
7 | Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species.Science, 288, 1414-1418. |
8 | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds den Boer PJ, Gradwell GR), pp. 298-312. Centre for Agricultural Publication and Documentation, Wageningen. |
9 | Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species.Journal of Ecology, 90, 714-727. |
10 | Du YJ, Mi XC, Ma KP (2012) Comparison of seed rain and seed limitation between community understory and gaps in a subtropical evergreen forest.Acta Oecologica, 44, 11-19. |
11 | Felsenstein J (1985) Phylogenies and the comparative method.The American Naturalist, 125, 1-15. |
12 | Getzin S, Wiegand T, Wiegand K, He FL (2008) Heterogeneity in?uences spatial patterns and demographics in forest stands.Journal of Ecology, 96, 807-820. |
13 | Greene DF, Johnson EA (1995) Long-distance wind dispersal of tree seeds.Canadian Journal of Botany, 73, 1036-1045. |
14 | Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
15 | He FL, Legendre P (2002) Species diversity patterns derived from species-area models.Ecology, 83, 1185-1198. |
16 | Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest.Science, 203, 1299-1309. |
17 | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
18 | Hu ZH (胡正华), Yu MJ (于明坚) (2005) Niche characteristics of dominant populations in Cyclobalanopsis glauca forest in Gutian Mountain.Chinese Journal of Ecology(生态学杂志), 24, 1159-1162. (in Chinese with English abstract) |
19 | Janzen DH (1970) Herbivores and the number of tree species in tropical forests.The American Naturalist, 104, 501-528. |
20 | Jin DM (金冬梅), Li Y (李妍), Sun SC (孙书存) (2008) Principles and applications of phylogenetic comparative methods: an overview.Acta Ecologica Sinica(生态学报), 28, 1247-1256. (in Chinese with English abstract) |
21 | Jin DM (金冬梅) (2010) Leaf Traits of Woody Species in East China Forests and Their Relationships with Climate (中国东部森林木本植物的叶性状及其与气候的关系). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
22 | Jordano P, Forget PM, Lambert JE, Böhning-Gaese K, Traveset A, Wright SJ (2011) Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction.Biology Letters, 7, 321-323. |
23 | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26, 1463-1464. |
24 | Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory.Journal of Ecology, 97, 616-628. |
25 | Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distribution of tree species in a subtropical forest of China.Oikos, 118, 495-502. |
26 | Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, Du YJ, Zhang JL, Mi XC, Ren HB, Ma KP (2012) Covariation in plant functional traits and soil fertility within two species-rich forests.PLoS ONE, 7, e34767. |
27 | Medellin R, Gaona O (1999) Seed dispersal by bats and birds in forest and disturbed habitat of Chiapas, Mexico.Biotropica, 31, 478-485. |
28 | Montoya D, Purves DW, Urbieta IR, Zavala MA (2009) Do species distribution models explain spatial structure within tree species ranges?Global Ecology and Biogeography, 18, 662-673. |
29 | Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance-decay of similarity in ecological communities.Ecology Letters, 11, 904-917. |
30 | Muller-Landau HC, Wright SJ, Calderon O, Condit R, Hubbell SP (2008) Interspecific variation in primary seed dispersal in a tropical forest.Journal of Ecology, 96, 653-667. |
31 | Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment.Trends in Ecology and Evolution, 15, 278-285. |
32 | Nystrand O, Granström A (2000) Predation on Pinus sylvestris seeds and juvenile seedlings in Swedish boreal forest in relation to stand disturbance by logging.Journal of Applied Ecology, 37, 449-463. |
33 | Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language.Bioinformatics, 20, 289-290. |
34 | Plotkin JB, Muller-Landau HC (2002) Sampling the species composition of a landscape.Ecology, 83, 3344-3356. |
35 | Plotkin JB, Potts MD, Leslie N, Manokaran N, LaFrankie J, Ashton PS (2000) Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81-99. |
36 | Rand TA (2000) Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient.Journal of Ecology, 88, 608-621. |
37 | Réjou-Méchain M, Flores O, Bourland N, Doucet JL, Feteke RF, Pasquier A, Hardy OJ (2011) Spatial aggregation of tropical trees at multiple spatial scales.Journal of Ecology, 99, 1373-1381. |
38 | Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees.PLoS Biology, 4, 2132-2137. |
39 | Shen GC, Yu M, Hu XS, Mi X, Ren H, Sun IF, Ma K (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity.Ecology, 90, 3033-3041. |
40 | Wang X, Hao Z, Ye J, Zhang J, Li B, Yao X (2008) Spatial pattern of diversity in an old-growth temperate forest in Northeastern China.Acta Oecologica, 33, 345-354. |
41 | Wang XG, Wiegand T, Hao ZQ, Li BH, Ye J, Lin F (2010) Species associations in an old-growth temperate forest in north-eastern China.Journal of Ecology, 98, 674-686. |
42 | Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229. |
43 | Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering.Ecology, 88, 3088-3102. |
44 | Yu MJ (于明坚), Hu ZH (胡正华), Yu JP (余建平), Ding BY (丁炳扬), Fang T (方腾) (2001) Forest vegetation types in Gutianshan Nature Reserve in Zhejiang. Journal of Zhejiang University (Agriculture & Life Sciences) (浙江大学学报农业与生命科学版), 27, 375-380. (in Chinese with English abstract) |
45 | Zhang JL (张金龙) (2011) Plant Phylogenetic Diversity Patterns and Their Environmental Determinants: From Local to Regional Scales (植物系统发育多样性格局及其环境解释: 从群落到区域). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
46 | Zhu Y (祝燕), Zhao GF (赵谷风), Zhang LW (张俪文), Shen GC (沈国春), Mi XC (米湘成), Ren HB (任海保), Yu MJ (于明坚), Chen JH (陈建华), Chen SW (陈声文), Fang T (方腾), Ma KP (马克平) (2008) Community composition and structure of Gutianshan forest dynamics plot in a mid subtropical evergreen broad-leaved forest, east China. Journal of Plant Ecology(植物生态学报), 32, 262-273. (in Chinese with English abstract) |
[1] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[2] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[3] | 王雅婷, 张定海, 张志山. 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性[J]. 生物多样性, 2022, 30(3): 21280-. |
[4] | 王重阳, 赵联军, 孟世勇. 王朗国家级自然保护区滑坡体兰科植物分布格局及其保护策略[J]. 生物多样性, 2022, 30(2): 21313-. |
[5] | 曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 赵航, 朱威霖, 王健铭, 李景文. 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响[J]. 生物多样性, 2022, 30(11): 22029-. |
[6] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[7] | 郝希阳, 贺姹, 楚克林, 申志新, 赵强, 高伟, 潘达, 孙红英. 海南岛淡水蟹类分布格局与多样性保护[J]. 生物多样性, 2021, 29(5): 605-616. |
[8] | 梁栋栋, 彭杰, 高改利, 洪欣, 周守标, 储俊, 王智. 鹞落坪落叶阔叶林蔷薇科主要树种的空间分布格局及种间关联性[J]. 生物多样性, 2020, 28(8): 1008-1017. |
[9] | 姚志良,温韩东,邓云,曹敏,林露湘. 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力[J]. 生物多样性, 2020, 28(4): 445-454. |
[10] | 孙远, 胡维刚, 姚树冉, 孙颖, 邓建明. 黄河流域被子植物和陆栖脊椎动物丰富度格局及其影响因子[J]. 生物多样性, 2020, 28(12): 1523-1532. |
[11] | 刘翔宇,赵慈良,许洺山,梁启明,朱晓彤,李亮,阎恩荣. 中国东部海岛维管植物的beta多样性及其驱动因素[J]. 生物多样性, 2019, 27(4): 380-387. |
[12] | 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185. |
[13] | 胡一鸣, 梁健超, 金崑, 丁志锋, 周智鑫, 胡慧建, 蒋志刚. 喜马拉雅山哺乳动物物种多样性垂直分布格局[J]. 生物多样性, 2018, 26(2): 191-201. |
[14] | 郭志文, 郑景明. 用植物生活史性状预测种子扩散方式[J]. 生物多样性, 2017, 25(9): 966-971. |
[15] | 蒙洋, 邱月, 张亮, 王翠玲, 臧振华, 张学耀, 申国珍, 闫彩凤, 陈全胜. 地理距离、海拔和气候差异对独龙江流域维管植物群落物种空间相异性的影响[J]. 生物多样性, 2017, 25(12): 1313-1320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn