生物多样性 ›› 2021, Vol. 29 ›› Issue (5): 575-585. DOI: 10.17520/biods.2020450
邵晨1, 李耀琪2, 罗奥2, 王志恒2, 席祯翔1, 刘建全1, 徐晓婷1,*()
收稿日期:
2020-12-05
接受日期:
2021-02-03
出版日期:
2021-05-20
发布日期:
2021-04-22
通讯作者:
徐晓婷
作者简介:
* E-mail: xiaotingxu@pku.edu.cn基金资助:
Chen Shao1, Yaoqi Li2, Ao Luo2, Zhiheng Wang2, Zhenxiang Xi1, Jianquan Liu1, Xiaoting Xu1,*()
Received:
2020-12-05
Accepted:
2021-02-03
Online:
2021-05-20
Published:
2021-04-22
Contact:
Xiaoting Xu
摘要:
基因组大小在被子植物物种之间存在着巨大的变异, 但目前对不同生活型被子植物功能性状与基因组大小的关系缺乏统一的认识。本研究基于被子植物245科2,226属11,215个物种的基因组大小数据, 探讨了不同生活型物种种子重量、最大植株高度和叶片氮、磷含量4个功能性状与基因组大小之间的关系。结果表明, 被子植物最大植株高度和种子重量与基因组大小间的关系在草本和木本植物中存在显著差异。草本植物最大植株高度与基因组大小的关系不显著, 但种子重量与其呈极显著的正相关关系。木本植物最大植株高度与基因组大小显著负相关, 但种子重量与其关系不显著。木本植物叶片氮含量与基因组大小呈显著正相关, 但其他生活型植物的叶片氮、磷含量与基因组大小均无显著相关性。本研究表明被子植物功能性状与基因组大小的相关性在不同生活型间存在差异, 这为深入研究植物多种功能性状和植物生活型与基因组大小的权衡关系在植物演化和生态适应中的作用提供了重要依据。
邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷 (2021) 不同生活型被子植物功能性状与基因组大小的关系. 生物多样性, 29, 575-585. DOI: 10.17520/biods.2020450.
Chen Shao, Yaoqi Li, Ao Luo, Zhiheng Wang, Zhenxiang Xi, Jianquan Liu, Xiaoting Xu (2021) Relationship between functional traits and genome size variation of angiosperms with different life forms. Biodiversity Science, 29, 575-585. DOI: 10.17520/biods.2020450.
图1 被子植物基因组大小(pg)在不同生活型间的频率分布。(a)所有被子植物; (b)草本植物; (c)木本植物; (d)基因组大小的分布(小提琴图), 其中a、b、c表示不同生活型物种的基因组大小之间存在显著性差异(adjusted-P < 0.01), 圆形点表示各生活型物种的基因组大小的中值。
Fig. 1 Distribution of genome size (pg) for angiosperms with different life forms. (a) All angiosperms; (b) Herbaceous species; (c) Woody species; (d) Violin plot of genome size, in which letter a, b and c indicate significant differences in genome size for species with different life form, and circular dots represent the median values of genome size.
生活型 Life form | 科样本量 Family number | 属样本量 Genus number | 物种样本量 Species number | 均值 Mean | 最小值 Min. | 最大值 Max. | |
---|---|---|---|---|---|---|---|
基因组大小 Genome size (pg) | 所有物种 All species | 245 | 2,226 | 11,215 | 4.74 | 0.07 | 152.2 |
木本植物 Woody species | 155 | 486 | 3,101 | 2.33 | 0.17 | 83.60 | |
草本植物 Herbs | 151 | 1,531 | 8,048 | 5.76 | 0.07 | 152.20 | |
一年生草本植物 Annual herbs | 46 | 299 | 922 | 2.94 | 0.12 | 23.62 | |
多年生草本植物 Perennial herbs | 136 | 1,101 | 5,266 | 6.64 | 0.07 | 152.20 | |
种子重量 Seed mass (g) | 所有物种 All species | 189 | 1,243 | 3,909 | 68.37 | 0.001 | 25,406 |
木本植物 Woody species | 118 | 442 | 1,061 | 216.76 | 0.009 | 25,406 | |
草本植物 Herbs | 114 | 866 | 2,840 | 12.52 | 0.001 | 9,238.6 | |
一年生草本植物 Annual herbs | 46 | 250 | 597 | 13.77 | 0.003 | 393.5 | |
多年生草本植物 Perennial herbs | 107 | 728 | 2,225 | 12.19 | 0.001 | 9,238.6 | |
最大植株高度 Maximum plant height (m) | 所有物种 All species | 142 | 733 | 1,737 | 3.55 | 0.001 | 60 |
木本植物 Woody species | 94 | 277 | 554 | 9.34 | 0.15 | 60 | |
草本植物 Herbs | 79 | 494 | 1,183 | 0.84 | 0.001 | 25 | |
一年生草本植物 Annual herbs | 35 | 145 | 268 | 0.77 | 0.01 | 8 | |
多年生草本植物 Perennial herbs | 75 | 410 | 915 | 0.87 | 0.001 | 25 | |
叶片氮含量 Leaf nitrogen concentration (mg/g) | 所有物种 All species | 74 | 256 | 437 | 22.02 | 3.69 | 66.80 |
木本植物 Woody species | 51 | 118 | 209 | 20.85 | 4.93 | 66.80 | |
草本植物 Herbs | 33 | 141 | 227 | 23.10 | 3.69 | 53.70 | |
一年生草本植物 Annual herbs | 9 | 36 | 42 | 25.76 | 10.11 | 53.70 | |
多年生草本植物 Perennial herbs | 31 | 116 | 185 | 22.49 | 3.69 | 49.11 | |
叶片磷含量 Leaf phosphorus concentration (mg/g) | 所有物种 All species | 74 | 256 | 437 | 1.83 | 0.21 | 7.30 |
木本植物 Woody species | 51 | 118 | 209 | 1.59 | 0.21 | 5.20 | |
草本植物 Herbs | 33 | 141 | 227 | 2.05 | 0.32 | 7.30 | |
一年生草本植物 Annual herbs | 9 | 36 | 42 | 2.51 | 0.80 | 5.09 | |
多年生草本植物 Perennial herbs | 31 | 116 | 185 | 1.94 | 0.32 | 7.30 |
表1 被子植物不同生活型物种的基因组大小及功能性状信息
Table 1 Quantitative information of genome size and functional traits among angiosperms with different life forms
生活型 Life form | 科样本量 Family number | 属样本量 Genus number | 物种样本量 Species number | 均值 Mean | 最小值 Min. | 最大值 Max. | |
---|---|---|---|---|---|---|---|
基因组大小 Genome size (pg) | 所有物种 All species | 245 | 2,226 | 11,215 | 4.74 | 0.07 | 152.2 |
木本植物 Woody species | 155 | 486 | 3,101 | 2.33 | 0.17 | 83.60 | |
草本植物 Herbs | 151 | 1,531 | 8,048 | 5.76 | 0.07 | 152.20 | |
一年生草本植物 Annual herbs | 46 | 299 | 922 | 2.94 | 0.12 | 23.62 | |
多年生草本植物 Perennial herbs | 136 | 1,101 | 5,266 | 6.64 | 0.07 | 152.20 | |
种子重量 Seed mass (g) | 所有物种 All species | 189 | 1,243 | 3,909 | 68.37 | 0.001 | 25,406 |
木本植物 Woody species | 118 | 442 | 1,061 | 216.76 | 0.009 | 25,406 | |
草本植物 Herbs | 114 | 866 | 2,840 | 12.52 | 0.001 | 9,238.6 | |
一年生草本植物 Annual herbs | 46 | 250 | 597 | 13.77 | 0.003 | 393.5 | |
多年生草本植物 Perennial herbs | 107 | 728 | 2,225 | 12.19 | 0.001 | 9,238.6 | |
最大植株高度 Maximum plant height (m) | 所有物种 All species | 142 | 733 | 1,737 | 3.55 | 0.001 | 60 |
木本植物 Woody species | 94 | 277 | 554 | 9.34 | 0.15 | 60 | |
草本植物 Herbs | 79 | 494 | 1,183 | 0.84 | 0.001 | 25 | |
一年生草本植物 Annual herbs | 35 | 145 | 268 | 0.77 | 0.01 | 8 | |
多年生草本植物 Perennial herbs | 75 | 410 | 915 | 0.87 | 0.001 | 25 | |
叶片氮含量 Leaf nitrogen concentration (mg/g) | 所有物种 All species | 74 | 256 | 437 | 22.02 | 3.69 | 66.80 |
木本植物 Woody species | 51 | 118 | 209 | 20.85 | 4.93 | 66.80 | |
草本植物 Herbs | 33 | 141 | 227 | 23.10 | 3.69 | 53.70 | |
一年生草本植物 Annual herbs | 9 | 36 | 42 | 25.76 | 10.11 | 53.70 | |
多年生草本植物 Perennial herbs | 31 | 116 | 185 | 22.49 | 3.69 | 49.11 | |
叶片磷含量 Leaf phosphorus concentration (mg/g) | 所有物种 All species | 74 | 256 | 437 | 1.83 | 0.21 | 7.30 |
木本植物 Woody species | 51 | 118 | 209 | 1.59 | 0.21 | 5.20 | |
草本植物 Herbs | 33 | 141 | 227 | 2.05 | 0.32 | 7.30 | |
一年生草本植物 Annual herbs | 9 | 36 | 42 | 2.51 | 0.80 | 5.09 | |
多年生草本植物 Perennial herbs | 31 | 116 | 185 | 1.94 | 0.32 | 7.30 |
图2 不同生活型被子植物种子重量(经lg转换)与基因组大小(经lg转换)的相关性。(a)所有被子植物; (b)一年生草本植物; (c)多年生草本植物; (d)木本植物。
Fig. 2 Correlations between seed mass (lg scale) and genome size (lg scale) for all angiosperms (a), annual herbs (b), perennial herbs (c), and (d) woody species.
图3 不同生活型被子植物最大植株高度(经lg转换)与基因组大小(经lg转换)的相关性。(a)所有被子植物; (b)一年生草本植物; (c)多年生草本植物; (d)木本植物。
Fig. 3 Correlations between maximum plant height (lg scale) and genome size (lg scale)of different life form angiosperms. (a) All angiosperms; (b) Annual herbs; (c) Perennial herbs; (d) Woody species.
图4 不同生活型被子植物叶片氮含量(经lg转换)与基因组大小(经lg转换)的相关性。(a)所有被子植物; (b)一年生草本植物; (c)多年生草本植物; (d)木本植物。
Fig. 4 Correlations between leaf nitrogen concentration (lg scale)and genome size (lg scale) of different life form angiosperms. (a) All angiosperms; (b) Annual herbs; (c) Perennial herbs; (d) Woody species.
[1] | Adler D, Kelly T (2020) vioplot. R package version 0.3.5. https://github.com/TomKellyGenetics/vioplot/. (accessed on 2020-11-25) |
[2] | Baetcke KP, Sparrow AH, Nauman CH, Schwemmer SS (1967) The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proceedings of the National Academy of Sciences, USA, 58, 533-540. |
[3] |
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytologist, 173, 422-437.
PMID |
[4] |
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 179, 975-986.
DOI URL |
[5] | Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 57, 289-300. |
[6] | Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B: Biological Sciences, 181, 109-135. |
[7] | Bennett MD (1973) Nuclear characters in plants. Brookhaven Symposia in Biology, 25, 344-366. |
[8] |
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
PMID |
[9] |
Chen C, Zhang SJ, Li LD, Liu ZD, Chen JL, Gu X, Wang LF, Fang X (2019) Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 43, 658-671. (in Chinese with English abstract)
DOI URL |
[ 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰 (2019) 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 43, 658-671.] | |
[10] | Chen JJ, Wang Y (2009) Recent progress in plant genome size evolution. Hereditas, 31, 464-470. (in Chinese with English abstract) |
[ 陈建军, 王瑛 (2009) 植物基因组大小进化的研究进展. 遗传, 31, 464-470.] | |
[11] |
Edwards GA, Endrizzi JE (1975) Cell size, nuclear size and DNA content relationships in Gossypium. Canadian Journal of Genetics and Cytology, 17, 181-186.
DOI URL |
[12] |
Engemann K, Sandel B, Boyle B, Enquist BJ, Jørgensen PM, Kattge J, McGill BJ, Morueta-Holme N, Peet RK, Spencer NJ, Violle C, Wiser SK, Svenning JC (2016) A plant growth form dataset for the New World. Ecology, 97, 3243-3243.
DOI PMID |
[13] | Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer, retrospect and prospect. Proceedings of the National Academy of Sciences, USA, 96, 1175-1180. |
[14] |
Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany, 95, 255-260.
DOI URL |
[15] |
Guignard MS, Nichols RA, Knell RJ, MacDonald A, Romila CA, Trimmer M, Leitch IJ, Leitch AR (2016) Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytologist, 210, 1195-1206.
DOI URL |
[16] | Guo SL, Chen GQ, Mao LH (2008) Relationship between DNA C-value and invasiveness in 539 angiosperm species in China. Acta Ecologica Sinica, 28, 3698-3705. (in Chinese with English abstract) |
[ 郭水良, 陈国奇, 毛俐慧 (2008) DNA C-值与被子植物入侵性关系的数据统计分析——以中国境内有分布的539种被子植物为例. 生态学报, 28, 3698-3705.] | |
[17] | Guo SL, Yu J, Li DD, Zhou P, Fang Q, Yin LP (2015) DNA C-values of 138 herbaceous species and their biological significance. Acta Ecologica Sinica, 35, 6516-6529. (in Chinese with English abstract) |
[ 郭水良, 于晶, 李丹丹, 周平, 方其, 印丽萍 (2015) 长三角及邻近地区138种草本植物DNA C-值测定及其生物学意义. 生态学报, 35, 6516-6529.] | |
[18] |
Han WX, Tang LY, Chen YH, Fang JY (2013) Relationship between the relative limitation and resorption efficiency of nitrogen vs. phosphorus in woody plants. PLoS ONE, 8, e83366.
DOI URL |
[19] |
He MS, Yan ZB, Cui XQ, Gong YM, Li KH, Han WX (2020) Scaling the leaf nutrient resorption efficiency: Nitrogen vs phosphorus in global plants. Science of the Total Environment, 729, 138920.
DOI URL |
[20] |
Hessen DO, Jeyasingh PD, Neiman M, Weider LJ (2010) Genome streamlining and the elemental costs of growth. Trends in Ecology & Evolution, 25, 75-80.
DOI URL |
[21] |
Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y, Jamzad Z, Wilson P, Raven JA, Band SR, Basconcelo S, Bogard A, Carter G, Charles M, Castro-Díez P, Cornelissen JHC, Funes G, Jones G, Khoshnevis M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Boustani S, Dehghan M, Guerrero-Campo J, Hynd A, Kowsary E, Kazemi-Saeed F, Siavash B, Villar-Salvador P, Craigie R, Naqinezhad A, Romo-Díez A, de Torres Espuny L, Simmons E (2010) Stomatal vs. genome size in angiosperms: The somatic tail wagging the genomic dog? Annals of Botany, 105, 573-584.
DOI PMID |
[22] |
Kang M, Wang J, Huang HW (2015) Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports, 5, 11636.
DOI URL |
[23] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI URL |
[24] |
Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: A quantile regression analysis. Ecology Letters, 5, 66-76
DOI URL |
[25] |
Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany, 95, 177-190.
DOI URL |
[26] |
Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Annals of Botany, 101, 759-766.
DOI URL |
[27] |
Krahulcová A, Trávníček P, Krahulec F, Rejmánek M (2017) Small genomes and large seeds: Chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae). Annals of Botany, 119, 957-964.
DOI PMID |
[28] |
Leishman MR (1999) How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species. New Phytologist, 141, 487-496.
DOI URL |
[29] |
Maranon T, Grubb PJ (1993) Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Functional Ecology, 7, 591-599.
DOI URL |
[30] |
Malerba ME, Ghedini G, Marshall DJ (2020) Genome size affects fitness in the eukaryotic alga Dunaliella tertiolecta. Current Biology, 30, 3450-3456.
DOI URL |
[31] | Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Pitman AJ, Westoby M (2005) Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences, USA, 102, 10540-10544. |
[32] | Ni LP, Guo SL (2005) Review on relationship between invasiveness of plants and their DNA C-value. Acta Ecologica Sinica, 25, 2372-2381. (in Chinese with English abstract) |
[ 倪丽萍, 郭水良 (2005) 论DNA C-值与植物入侵性的关系. 生态学报, 25, 2372-2381.] | |
[33] |
Ohri D (2005) Climate and growth form, the consequences for genome size in plants. Plant Biology, 7, 449-458.
PMID |
[34] | Ogle DH, Wheeler P, Dinno A (2020) FSA, Fisheries Stock Analysis. R package version 0.8.30.9000. https://github.com/droglenc/FSA/. (accessed on 2020-11-25) |
[35] |
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
PMID |
[36] |
Pellicer J, Leitch IJ (2020) The Plant DNA C-values database (release 7.1): An updated online repository of plant genome size data for comparative studies. New Phytologist, 226, 301-305.
DOI |
[37] | Puttick MN, Clark J, Donoghue PCJ (2015) Size is not everything: Rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 282, 20152289. |
[38] | R Development Core Team (2019) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (accessed on 2019-01-01) |
[39] |
Rees H, Cameron FM, Hazarika MH, Jones GH (1966) Nuclear variation between diploid angiosperms. Nature, 211, 828-830.
PMID |
[40] |
Revell LJ (2012) phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
DOI URL |
[41] |
Smith SA, Brown JW (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302-314.
DOI URL |
[42] |
Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. American Journal of Botany, 90, 1596-1603.
DOI URL |
[43] | Thompson K (1990) Genome size, seed size and germination temperature in herbaceous angiosperms. Evolutionary Trends in Plants, 4, 113-116. |
[44] | Tian D, Kattge J, Chen YH, Han WX, Luo YK, He JS, Hu HF, Tang ZY, Ma SH, Yan ZB, Lin QH, Schmid B, Fang JY (2019) A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 100, e02812. |
[45] | Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[46] |
Wang ZH, Li YQ, Su XY, Tao SL, Feng X, Wang QG, Xu XT, Liu YP, Michaletz ST, Shrestha N, Larjavaara1 M, Enquist BJ (2019) Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. Journal of Plant Ecology, 12, 791-803.
DOI URL |
[47] |
Warton DI, Weber NC (2002) Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
[48] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[49] |
Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3: An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259.
DOI URL |
[50] |
Yuan ZY, Chen HYH (2015) Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
PMID |
[51] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI PMID |
[1] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[2] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[3] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[4] | 张军, 彭焕文, 夏富才, 王伟. 青藏高原高山区和泛北极地区种子植物多倍体比较[J]. 生物多样性, 2021, 29(11): 1470-1480. |
[5] | 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响[J]. 生物多样性, 2020, 28(3): 277-288. |
[6] | 李云琴, 杜凡, 汪健, 李瑞年, 刘洋. 金沙江上游干旱河谷植被[J]. 生物多样性, 2016, 24(4): 489-494. |
[7] | 王炜, 裴浩, 王鑫厅. 优势种植被分类系统的逻辑分析与示例方案化[J]. 生物多样性, 2016, 24(2): 136-147. |
[8] | 姚蓓, 余建平, 刘晓娟, 米湘成, 马克平. 亚热带常绿阔叶林种子性状对木本植物聚集格局的影响[J]. 生物多样性, 2015, 23(2): 157-166. |
[9] | 皮春燕, 刘艳. 重庆主城区住宅小区苔藓组成与多样性[J]. 生物多样性, 2014, 22(5): 583-588. |
[10] | 曹科, 饶米德, 余建平, 刘晓娟, 米湘成, 陈建华. 古田山木本植物功能性状的系统发育信号及其对群落结构的影响[J]. 生物多样性, 2013, 21(5): 564-571. |
[11] | 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 生物多样性, 2013, 21(3): 278-287. |
[12] | 王国宏, 王小平, 张维康, 李贺, 杜连海, 吴记贵. 北京市自然保护区植物群落对干扰胁迫的抵抗力分析[J]. 生物多样性, 2013, 21(2): 153-162. |
[13] | 姚元林, 刘文耀, 马文章, 宋亮. 云南哀牢山国家保护区几个过渡带树干附生苔藓的物种组成与多样性[J]. 生物多样性, 2012, 20(6): 654-664. |
[14] | 高末, 胡仁勇, 陈贤兴, 李伟成, 丁炳扬. 干扰、地形和土壤对温州入侵植物分布的影响[J]. 生物多样性, 2011, 19(4): 424-431. |
[15] | 刘建, 李钧敏, 余华, 何维明, 于飞海, 桑卫国, 刘国方, 董鸣. 植物功能性状与外来植物入侵[J]. 生物多样性, 2010, 18(6): 569-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn