生物多样性 ›› 2010, Vol. 18 ›› Issue (6): 559-568. DOI: 10.3724/SP.J.2010.559
所属专题: 外来物种入侵:机制、影响与防控; 生物入侵
收稿日期:
2010-05-10
接受日期:
2010-08-31
出版日期:
2010-11-20
发布日期:
2011-01-31
通讯作者:
叶万辉
作者简介:
*E-mail: why@scib.ac.cn基金资助:
Hongyu Niu1,2, Hao Shen1, Wanhui Ye1,*()
Received:
2010-05-10
Accepted:
2010-08-31
Online:
2010-11-20
Published:
2011-01-31
Contact:
Wanhui Ye
摘要:
由于外来种入侵地一般都远离其自然分布区(原产地), 如果只在其入侵地或者原产地进行研究, 很难真正发现其入侵性形成和成功入侵的根本原因。目前, 许多学者开始关注和倡导对入侵种在原产地和入侵地的表现同时进行研究, 即入侵种的全境性研究(whole-range studies), 为入侵生物现有地理分布格局的形成原因和入侵机制等提供解释。本文结合国内外关于入侵植物全境性研究的进展和成果, 分别针对研究的主要目的、内容、意义等进行了全面的阐述, 探讨了存在的问题与不足, 并对未来相关研究进行了展望。目前已有的全境性研究主要是通过野外直接观测和同质种植园实验来比较入侵种在入侵地和原产地的生长、繁殖和生理生态等表型性状的差异, 以及应用分子标记方法比较入侵地种群和原产地种群遗传多样性的差异, 进行入侵植物的分子系统地理学研究, 从而有效检验生物入侵机制的理论和假说, 深入阐明植物入侵的机制, 为制定入侵植物的防控策略提供指导。值得注意的是, 由于外来植物入侵的全境性研究起步较晚, 现有研究的方法和内容还不够完善, 今后需要在加强国际合作的基础上进一步改善。
牛红玉, 沈浩, 叶万辉 (2010) 外来植物入侵的全境性研究进展与展望. 生物多样性, 18, 559-568. DOI: 10.3724/SP.J.2010.559.
Hongyu Niu, Hao Shen, Wanhui Ye (2010) Whole-range studies on alien plant invasion: recent progress and future prospects. Biodiversity Science, 18, 559-568. DOI: 10.3724/SP.J.2010.559.
[1] |
Alexander JM, Edwards PJ, Poll M, Parks CG, Dietz H (2009) Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology, 90, 612-622.
DOI URL PMID |
[2] | Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge. |
[3] |
Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377-1380.
DOI URL PMID |
[4] | Baker HG (1965) Characteristics and modes of origin of weeds. In: The Genetics of Colonising Species (eds Baker HG, Stebbins GL), pp. 147-168. Academic Press, New York. |
[5] | Baker HG (1974) The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1-24. |
[6] | Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Ecology of Biological Invasions (eds Groves RH, Burdon JJ), pp. 21-33. Cambridge University Press, Cambridge. |
[7] | Blair AC, Wolfe LM (2004) The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology, 85, 3035-3042. |
[8] | Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889. |
[9] |
Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144, 1-11.
URL PMID |
[10] |
Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[11] |
Callaway RM, Maron JL (2006) What have exotic plant invasions taught us over the past 20 years? Trends in Ecology and Evolution, 21, 369-374.
DOI URL PMID |
[12] | Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443. |
[13] |
Colautti RI, Maron JL, Barrett SCH (2008) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evolutionary Applications, 2, 187-199.
DOI URL PMID |
[14] | Cripps MG, Hinz HL, McKenney JL, Price WJ, Schwarzlander M (2009) No evidence for an ‘evolution of increased competitive ability’ for the invasive Lepidium draba. Basic and Applied Ecology, 10, 103-112. |
[15] | Ebeling SK, Hensen I, Auge H (2008) The invasive shrub Buddleja davidii performs better in its introduced range. Diversity and Distributions, 14, 225-233. |
[16] | Elton CS (1958) The Ecology of Invasions by Animals and Plants. Chapman and Hall, London. |
[17] |
Feng YL, Auge H, Ebeling SK (2007 a) Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia, 153, 501-510.
URL PMID |
[18] | Feng YL, Wang JF, Sang WG (2007b) Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica, 31, 40-47. |
[19] | Feng YL, Wang JF, Sang WG (2007c) Irradiance acclimation, capture ability, and efficiency in invasive and non-invasive alien plant species. Photosynthetica, 45, 245-253. |
[20] |
Feng YL (2008a) Nitrogen allocation and partitioning in invasive and native Eupatorium species. Physiologia Plantarum, 132, 350-358.
URL PMID |
[21] |
Feng YL (2008b) Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiologia Plantarum, 133, 318-326.
DOI URL PMID |
[22] | Feng YL, Fu GL (2008) Nitrogen allocation, partitioning and use efficiency in three invasive plant species in comparison with their native congeners. Biological Invasions, 10, 891-902. |
[23] |
Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
URL PMID |
[24] | Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL (2009) Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences, USA, 106, 1853-1856. |
[25] | Feng YL (冯玉龙), Liao ZY (廖志勇), Zhang R (张茹), Zheng YL (郑玉龙), Li YP (李扬苹), Lei YB (类延宝) (2009) Adaptive evolution in response to environmental gradients and enemy release in invasive alien plant species. Biodiversity Science (生物多样性), 17, 340-352. (in Chinese with English abstract) |
[26] | Franks SJ, Pratt PD, Dray FA, Simms EL (2008) No evolution of increased competitive ability or decreased allocation to defense in Melaleuca quinquenervia since release from natural enemies. Biological Invasions, 10, 455-466. |
[27] |
Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology, 14, 4275-4285.
URL PMID |
[28] |
Goolsby JA, De Barro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Molecular Ecology, 15, 287-297.
URL PMID |
[29] | Guo QF (2002) Perspectives on trans-pacific biological invasions. Acta Phytoecologica Sinica (植物生态学报), 26, 724-730. |
[30] | Halpern SL, Underwood N (2006) Approaches for testing herbivore effects on plant population dynamics. Journal of Applied Ecology, 43, 922-929. |
[31] |
Hawkes CV (2007) Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. The American Naturalist, 170, 832-843.
URL PMID |
[32] |
He WM, Feng YL, Ridenour WM, Thelen GC, Pollock JL, Diaconu A, Callaway RM (2009) Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudate (±)-catechin. Oecologia, 159, 803-815.
URL PMID |
[33] |
Henry P, Le Lay G, Goudet J, Guisan A, Jahodova S, Besnard G (2009) Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Molecular Ecology, 18, 2819-2831.
URL PMID |
[34] | Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5-15. |
[35] | Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. Journal of Applied Ecology, 43, 835-847. |
[36] |
Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
URL PMID |
[37] | Jarchow ME, Cook BJ (2009) Allelopathy as a mechanism for the invasion of Typha angustifolia. Plant Ecology, 204, 113-124. |
[38] | Kurian KM, Watson CJ, Wyllie AH (1999) DNA chip technology. Journal of Pathology, 187, 267-271. |
[39] | Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences, USA, 104, 3883-3888. |
[40] | Lee CE (2002) Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 17, 386-391. |
[41] |
Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies ( Eschscholzia californica). Journal of Evolutionary Biology, 20, 1090-1103.
DOI URL PMID |
[42] |
Lewis KC, Bazzaz FA, Liao Q, Orians CM (2006) Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia, 148, 384-395.
DOI URL PMID |
[43] | Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Annals of the Missouri Botanical Garden, 89, 176-189. |
[44] | Maron JL, Vila M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos, 95, 361-373. |
[45] | Maron JL, Vila M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74, 261-280. |
[46] | Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biological Invasions, 8, 1355-1366. |
[47] | Okada M, Lyle M, Jasieniuk M (2009) Inferring the introduction history of the invasive apomictic grass Cortaderia jubata using microsatellite markers. Diversity and Distributions, 15, 148-157. |
[48] | Pimentel D, Glenister C, Fast S, Gallahan D (1984) Environmental risks of biological pest controls. Oikos, 42, 283-290. |
[49] |
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends in Plant Science, 13, 288-294.
URL PMID |
[50] | Reinhart KO, Packer A, Van der Putten WH, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 6, 1046-1050. |
[51] |
Ridley CE, Ellstrand NC (2009) Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish ( Raphanus sativus). Biological Invasions, 11, 2251-2264.
DOI URL |
[52] | Rogers WE, Siemann E (2004) Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. Journal of Applied Ecology, 41, 561-570. |
[53] | Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annual Review of Ecology and Systematics, 32, 305-332. |
[54] | Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interfers with plant-plant interactions. Plant and Soil, 321, 259-278. |
[55] |
Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology, 90, 1055-1062.
URL PMID |
[56] | Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecology Letters, 4, 514-518. |
[57] | Siemann E, Rogers WE (2003a) Increased competitive ability of an invasive tree may be limited by an invasive beetle. Ecological Applications, 13, 1503-1507. |
[58] |
Siemann E, Rogers WE (2003b) Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Oecologia, 135, 451-457.
DOI URL PMID |
[59] | Stastny M, Schaffner U, Elle E (2005) Do vigour of introduced populations and escape from specialist herbivores contribute to invasiveness? Journal of Ecology, 93, 27-37. |
[60] | Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 12, 537-542. |
[61] |
Sultan SE, Wilczek AM, Bell DL, Hand G (1998) Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia, 115, 564-578.
DOI URL PMID |
[62] |
Thebaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? The American Naturalist, 157, 231-236.
DOI URL PMID |
[63] |
Thompson JN (1998) Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13, 329-332.
DOI URL PMID |
[64] | Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. Journal of Ecology, 97, 641-645. |
[65] | van Driesche RG, Bellows TS (1996) Biological Control. Chapman & Hall, New York. |
[66] |
Vila M, Maron JL, Marco L (2005) Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia, 142, 474-479.
URL PMID |
[67] |
Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecology Letters, 7, 285-292.
DOI URL |
[68] | Ward SM, Gaskin JF, Wilson LM (2008) Ecological genetics of plant invasion: what do we know. Invasive Plant Science and Management, 1, 98-109. |
[69] |
Williams DA, Overholt WA, Cuda JP, Hughes CR (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree ( Schinus terebinthifolius) in Florida. Molecular Ecology, 14, 3643-3656.
URL PMID |
[70] | Williams DG, Mack RN, Black RA (1995) Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 76, 1569-1580. |
[71] |
Williams JL, Auge H, Maron JL (2008) Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia, 157, 239-248.
DOI URL PMID |
[72] | Williams JR (1954) The biological control of weeds. In: Report of the Sixth Commonwealth Entomological Congress, pp. 95-98. London. |
[73] | Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecology Letters, 3, 275-283. |
[74] | Wolfe LM, Elzinga JA, Biere A (2004) Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecology Letters, 7, 813-820. |
[75] | Xu RM (徐汝梅), Ye WH (叶万辉) (2003) Biological Invasions: Theory and Practice (生物入侵: 理论与实践). Science Press, Beijing.(in Chinese) |
[76] | Zou J, Rogers WE, Siemann E (2007) Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730. |
[77] | Zou J, Rogers WE, Siemann E (2008) Increased competitive ability and herbivory tolerance in the invasive plant Sapium sebiferum. Biological Invasions, 10, 291-302. |
[1] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[2] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[3] | 冯晨, 张洁, 黄宏文. 统筹植物就地保护与迁地保护的解决方案: 植物并地保护(parallel situ conservation)[J]. 生物多样性, 2023, 31(9): 23184-. |
[4] | 齐海玲, 樊鹏振, 王跃华, 刘杰. 中国北方六省区胡桃的遗传多样性和群体结构[J]. 生物多样性, 2023, 31(8): 23120-. |
[5] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
[6] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[7] | 何艺玥, 刘玉莹, 张富斌, 秦强, 曾燏, 吕振宇, 杨坤. 梯级水利工程背景下的嘉陵江干流蛇鮈群体遗传多样性和遗传结构[J]. 生物多样性, 2023, 31(11): 23160-. |
[8] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[9] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[10] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[11] | 崔静, 徐明芳, 章群, 李瑶, 曾晓舒, 李莎. 基于3种线粒体标记探讨中日沿海角木叶鲽遗传多样性差异[J]. 生物多样性, 2022, 30(5): 21485-. |
[12] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[13] | 孙军, 宋煜尧, 施义锋, 翟键, 燕文卓. 近十年中国海洋生物多样性研究进展[J]. 生物多样性, 2022, 30(10): 22526-. |
[14] | 栗冬梅, 杨卫红, 李庆多, 韩茜, 宋秀平, 潘虹, 冯云. 巴尔通体在滇西南蝙蝠中高度流行并具有丰富的遗传变异特征[J]. 生物多样性, 2021, 29(9): 1245-1255. |
[15] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn