生物多样性 ›› 2012, Vol. 20 ›› Issue (1): 3-11. DOI: 10.3724/SP.J.1003.2012.09077
所属专题: 生物入侵
收稿日期:
2011-05-09
接受日期:
2011-10-21
出版日期:
2012-01-20
发布日期:
2012-02-14
通讯作者:
桑卫国
作者简介:
*E-mail: swg@ibcas.ac.cn基金资助:
Jinping Wang1,2, Lijia Dong1,2, Weiguo Sang1,*()
Received:
2011-05-09
Accepted:
2011-10-21
Online:
2012-01-20
Published:
2012-02-14
Contact:
Weiguo Sang
摘要:
已有研究表明, 土壤氮素增加可提高外来植物的入侵性, 降低本地植物的竞争力。为揭示全球氮沉降对入侵种与本地种之间竞争关系的影响, 我们于2010年5-8月在中国科学院北京森林生态系统定位研究站温室内, 采用取代系列实验方法(standard replacement experiment), 研究了3个氮素水平下入侵种豚草(Ambrosia artemisiifolia)与本地种黄花蒿(Artemisia annua)、蒙古蒿(Artemisia mongolica)的生长特征及种内、种间竞争关系的变化。实验采用双因素-随机区组设计, 设置了低氮、中氮和高氮3个氮素水平, 每一氮素水平分别设置豚草和黄花蒿、豚草和蒙古蒿组成的竞争实验, 生长90 d后测量株高和生物量。结果表明: 单栽情况下, 随氮素水平的增加3个物种的株高均增加, 而生物量均无显著变化; 混栽情况下, 3个物种株高和生物量随氮素水平的增加变化各异, 豚草呈极显著增加趋势, 而黄花蒿无明显变化, 蒙古蒿则先增加后减少。豚草的快速生长使其在竞争中处于优势地位, 对本地种黄花蒿和蒙古蒿产生明显的竞争效应。但不同氮素水平下, 豚草对本地种的竞争力不同: 低氮素水平下, 豚草<两个本地种; 中氮素水平下, 黄花蒿<豚草<蒙古蒿; 高氮素水平下, 豚草>两个本地种。氮素添加显著提高了豚草的种间竞争力, 改变了豚草与本地种之间的竞争关系, 使竞争有利于入侵种。据此推测, 在全球变化的背景下, 氮沉降的增加将会促进外来种豚草的入侵, 增加本地群落的可入侵性。
王晋萍, 董丽佳, 桑卫国 (2012) 不同氮素水平下入侵种豚草与本地种黄花蒿、蒙古蒿的竞争关系. 生物多样性, 20, 3-11. DOI: 10.3724/SP.J.1003.2012.09077.
Jinping Wang, Lijia Dong, Weiguo Sang (2012) Effects of different nitrogen regimes on competition betweenAmbrosia artemisiifolia, an invasive species, and two native species, Artemisia annua and Artemisia mongolica. Biodiversity Science, 20, 3-11. DOI: 10.3724/SP.J.1003.2012.09077.
图1 不同氮素水平下豚草、黄花蒿和蒙古蒿的平均株高(平均值±标准差)。不同小写字母表示同一混栽比例在不同氮素水平下差异显著(LSD检验: P < 0.05, n = 5)。
Fig. 1 Mean height of Ambrosia artemisiifolia,Artemisia annuaandArtemisia mongolica under different N regimes. Vertical bars represent means ± SE. Different small letters indicate significant differences among different N regimes in the same density ratio (LSD test: P<0.05, n = 5).
图2 不同氮素水平下豚草、黄花蒿和蒙古蒿的平均生物量(平均值±标准差)。不同小写字母表示同一混栽比例在不同氮素水平下差异显著(LSD检验: P<0.05, n = 5)。
Fig. 2 Mean biomass of Ambrosia artemisiifolia, Artemisia annuaandArtemisia mongolica under different N regimes. Vertical bars represent means ± SE. Different small letters indicate significant differences among different N regimes in the same density ratio (LSD test: P< 0.05,n = 5).
竞争指标 Indices | 氮素水平 N levels | 混栽比例 Density ratio (Na:Nb/c) | ||||
---|---|---|---|---|---|---|
3:1 | 2:2 | 1:3 | ||||
豚草和黄花蒿混栽 Ambrosia artemisiifoliamixtured with Artemisia annua | 豚草的相对竞争强度 | 低氮 Low | 0.25±0.09* | 0.03±0.51 | 0.56±0.33* | |
Relative competition intensity of Ambrosia artemisiifolia | 中氮 Medium | -0.27±0.14 | -0.20±0.10 | -0.08±0.23 | ||
高氮 High | -0.08±0.10 | -0.31±0.18 | -0.18±0.23 | |||
黄花蒿的相对竞争强度 | 低氮 Low | -0.04±0.32 | 0.61±0.07* | 0.36±0.53 | ||
Relative competition intensity of Artemisia annua | 中氮 Medium | 0.43±0.11* | 0.43±0.18 | 0.25±0.23 | ||
高氮 High | -0.04±0.12 | 0.36±0.13 | 0.12±0.05 | |||
豚草的竞争攻击力系数 | 低氮 Low | -0.15±0.20 | 0.29±0.26 | -0.46±0.32 | ||
Aggressivity of Ambrosia artemisiifolia | 中氮 Medium | 0.35±0.09* | 0.32±0.13 | 0.17±0.22 | ||
高氮 High | 0.02±0.09 | 0.34±0.14 | 0.15±0.13 | |||
豚草和蒙古蒿混栽 Ambrosia artemisiifoliamixtured with Artemisia mongolica | 豚草的相对竞争强度 | 低氮 Low | 0.26±0.16 | 0.24±0.20 | 0.28±0.19 | |
Relative competition intensity of Ambrosia artemisiifolia | 中氮 Medium | 0.19±0.04* | 0.28±0.14 | 0.36±0.21 | ||
高氮 High | -0.26±0.10 | -0.16±0.17 | 0.14±0.35 | |||
蒙古蒿的相对竞争强度 | 低氮 Low | -0.63±0.46 | -0.27±0.25 | 0.06±0.13 | ||
Relative competition intensity of Artemisia mongolica. | 中氮 Medium | -1.03±0.25* | -0.28±0.13 | -0.18±0.18 | ||
高氮 High | 0.30±0.11 | -0.07±0.12 | 0.19±0.14 | |||
豚草的竞争攻击力系数 | 低氮 Low | -0.45±0.26 | -0.25±0.20 | -0.11±0.11 | ||
Aggressivity of Ambrosia artemisiifolia | 中氮 Medium | -0.61±0.13* | -0.28±0.12 | -0.27±0.15 | ||
高氮 High | 0.28±0.11 | 0.18±0.15 | -0.11±0.23 |
表1 不同氮素水平下豚草、黄花蒿和蒙古蒿的竞争指标
Table 1 Competition indices of Ambrosia artemisiifolia, Artemisia annua and Artemisia mongolica under different N regimes
竞争指标 Indices | 氮素水平 N levels | 混栽比例 Density ratio (Na:Nb/c) | ||||
---|---|---|---|---|---|---|
3:1 | 2:2 | 1:3 | ||||
豚草和黄花蒿混栽 Ambrosia artemisiifoliamixtured with Artemisia annua | 豚草的相对竞争强度 | 低氮 Low | 0.25±0.09* | 0.03±0.51 | 0.56±0.33* | |
Relative competition intensity of Ambrosia artemisiifolia | 中氮 Medium | -0.27±0.14 | -0.20±0.10 | -0.08±0.23 | ||
高氮 High | -0.08±0.10 | -0.31±0.18 | -0.18±0.23 | |||
黄花蒿的相对竞争强度 | 低氮 Low | -0.04±0.32 | 0.61±0.07* | 0.36±0.53 | ||
Relative competition intensity of Artemisia annua | 中氮 Medium | 0.43±0.11* | 0.43±0.18 | 0.25±0.23 | ||
高氮 High | -0.04±0.12 | 0.36±0.13 | 0.12±0.05 | |||
豚草的竞争攻击力系数 | 低氮 Low | -0.15±0.20 | 0.29±0.26 | -0.46±0.32 | ||
Aggressivity of Ambrosia artemisiifolia | 中氮 Medium | 0.35±0.09* | 0.32±0.13 | 0.17±0.22 | ||
高氮 High | 0.02±0.09 | 0.34±0.14 | 0.15±0.13 | |||
豚草和蒙古蒿混栽 Ambrosia artemisiifoliamixtured with Artemisia mongolica | 豚草的相对竞争强度 | 低氮 Low | 0.26±0.16 | 0.24±0.20 | 0.28±0.19 | |
Relative competition intensity of Ambrosia artemisiifolia | 中氮 Medium | 0.19±0.04* | 0.28±0.14 | 0.36±0.21 | ||
高氮 High | -0.26±0.10 | -0.16±0.17 | 0.14±0.35 | |||
蒙古蒿的相对竞争强度 | 低氮 Low | -0.63±0.46 | -0.27±0.25 | 0.06±0.13 | ||
Relative competition intensity of Artemisia mongolica. | 中氮 Medium | -1.03±0.25* | -0.28±0.13 | -0.18±0.18 | ||
高氮 High | 0.30±0.11 | -0.07±0.12 | 0.19±0.14 | |||
豚草的竞争攻击力系数 | 低氮 Low | -0.45±0.26 | -0.25±0.20 | -0.11±0.11 | ||
Aggressivity of Ambrosia artemisiifolia | 中氮 Medium | -0.61±0.13* | -0.28±0.12 | -0.27±0.15 | ||
高氮 High | 0.28±0.11 | 0.18±0.15 | -0.11±0.23 |
图3 不同氮素水平下的取代系列实验图表。Ya、Yb、Yc代表豚草、黄花蒿和蒙古蒿每盆的实际生物量; YTab、YTac代表两混栽物种的实际总生物量。EYa、EYb、EYc代表按照混栽比例应得的豚草、黄花蒿和蒙古蒿每盆的预期生物量; EYTab、EYTac代表两混栽物种的预期总生物量。预期值是指理想状态下, 即种内竞争=种间竞争的前提下, 根据单栽生物量依混栽比例应得的值。
Fig. 3 Replacement diagrams under different N regimes. Ya, Yb, Yc represent the biomass of Ambrosia artemisiifolia, Artemisia annuaandArtemisia mongolica, and YTab, YTac represent the total biomass per pot. EYa, EYb, EYc represent the biomass of Ambrosia artemisiifolia, Artemisia annuaorArtemisia mongolica, and EYTab, EYTac represent the total biomass per pot by virtue of the density ratio according to monoculture. The expected biomass is obtained when inter- and intra- specific competition are equal.
[1] | Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3,52-66. |
[2] | Bobbink J (1987) Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: a threat to a species-rich ecosystem. Biological Conservation, 40,301-314. |
[3] | Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology, 40,344-353. |
[4] | Burke M, Grime J (1996) An experimental study of plant community invasibility. Ecology, 77,776-790. |
[5] |
Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290,521.
DOI URL PMID |
[6] | Cassidy TM, Fownes JH, Harrington RA (2004) Nitrogen limits an invasive perennial shrub in forest understory. Biological Invasions, 6,113-121. |
[7] | Chapin FS, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. The American Naturalist, 127,48-58. |
[8] | Chen H, Chen LJ, Albright TP (2007) Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed ( Ambrosia artemisiifolia L.) distribution in China. Chinese Science Bulletin, 52,1223-1230. |
[9] |
Clot B, Schneiter D, Tercier P, Gehrig R, Annie G, Thibaudon M (2002) Ambrosia pollen in Switzerland: local production or transport? Allergie et Immunologie, 34,126-128.
URL PMID |
[10] | Corbin JD, D'Antonio CM (2004) Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecology, 85,1273-1283. |
[11] | Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88,528-534. |
[12] |
Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution, 14,135-139.
DOI URL PMID |
[13] | Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6,503-523. |
[14] |
Fichtner K, Schulze ED (1992) The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia, 92,236-241.
URL PMID |
[15] | Fogarty G, Facelli JM (1999) Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. Plant Ecology, 144,27-35. |
[16] | Fumanal B, Girod C, Fried G, Bretagnolle F, Chauvel B (2008) Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Research, 48,349-359. |
[17] |
Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature, 446,1079-1081.
URL PMID |
[18] |
Genton B, Shykoff J, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology, 14,4275-4285.
DOI URL PMID |
[19] | Gibson D (1999) Designs for greenhouse studies of interactions between plants. Journal of Ecology, 87,1-16. |
[20] | Grace JB (1995) On the measurement of plant competition intensity. Ecology, 76,305-308. |
[21] |
Hager HA (2004) Competitive effect versus competitive response of invasive and native wetland plant species. Oecologia, 139,140-149.
URL PMID |
[22] |
Hobbs RJ, Gulmon S, Hobbs V, Mooney H (1988) Effects of fertiliser addition and subsequent gopher disturbance on a serpentine annual grassland community. Oecologia, 75,291-295.
DOI URL PMID |
[23] | Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 46,7-43. |
[24] | Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71,478-491. |
[25] | Jolliffe PA (2000) The replacement series. Journal of Ecology, 88,371-385. |
[26] | Kolb A, Alpert P, Enters D, Holzapfel C (2002) Patterns of invasion within a grassland community. Journal of Ecology, 90,871-881. |
[27] | Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biological Conservation, 117,215-226. |
[28] | Leishman MR, Thomson VP (2005) Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils, Sydney, Australia. Journal of Ecology, 93,38-49. |
[29] | Levine JM, Vila M, Antonio C, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270,775. |
[30] | Liu XJ, Ju XT, Zhang Y, He CE, Kopsch J, Zhang FS (2006) Nitrogen deposition in agroecosystems in the Beijing area. Agriculture, Ecosystems and Environment, 113,370-377. |
[31] | Lu JZ (陆建忠), Qiu W (裘伟), Chen JK (陈家宽), Li B (李博) (2005) Impact of invasive species on soil properties: Canadian goldenrod ( Solidago canadensis) as a case study. Biodiversity Science (生物多样性), 13,347-356. (in Chinese with English abstract) |
[32] | MacDonald AM, Kotanen PM (2010) Leaf damage has weak effects on growth and fecundity of common ragweed (Ambrosia artemisiifolia). Botany, 88,158-164. |
[33] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10,689-710. |
[34] |
Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia, 105,302-312.
URL PMID |
[35] | McGilchrist C, Trenbath B (1971) A revised analysis of plant competition experiments. Biometrics, 27,659-671. |
[36] | Patracchini C, Vidotto F, Ferrero A (2011) Common ragweed ( Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technology, 25,268-276. |
[37] | Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience, 50,53-65. |
[38] | Prinzing A, Durka W, Klotz S, Brandl R (2002) Which species become aliens? Evolutionary Ecology Research, 4,385-405. |
[39] | Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology, 77,1655-1661. |
[40] | Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17,170-176. |
[41] | Sher AA, Hyatt LA (1999) The disturbed resource-flux invasion matrix: a new framework for patterns of plant invasion. Biological Invasions, 1,107-114. |
[42] |
Suding KN, LeJeune KD, Seastedt TR (2004) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia, 141,526-535.
DOI URL PMID |
[43] | Vitousek PM, D'antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology, 21,1-16. |
[44] | Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. The American Scientist, 84,468-478. |
[45] | Wang K (王坤), Yang J (杨继), Chen JK (陈家宽) (2010) Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions. Biodiversity Science (生物多样性), 18, 615-621. (in Chinese with English abstract) |
[46] | Wang ML (王满莲), Feng YL (冯玉龙) (2005) Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata. Chinese Journal of Plant Ecology (植物生态学报), 29,697-705. (in Chinese with English abstract) |
[47] |
Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed ( Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma and Immunology, 88,279-282.
DOI URL PMID |
[48] |
Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science, 274,1720.
DOI URL PMID |
[49] | Weigelt A, Jolliffe P (2003) Indices of plant competition. Journal of Ecology, 91,707-720. |
[1] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[2] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[3] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[4] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[5] | 陈小红, 陈浩杰, 王雅竹, 肖书礼, 衡小琴, 赵安玖. 濒危植物峨眉含笑的种内、种间竞争[J]. 生物多样性, 2022, 30(11): 22003-. |
[6] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[7] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[8] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[9] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[10] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[11] | 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. |
[12] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[13] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[14] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
[15] | 张紫妍, 张致杰, 潘晓云. 喜旱莲子草对遮荫的可塑性反应:入侵地与原产地种群的比较[J]. 生物多样性, 2015, 23(1): 18-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn