生物多样性 ›› 2019, Vol. 27 ›› Issue (1): 13-23.doi: 10.17520/biods.2018193

• 研究报告 • 上一篇    下一篇

古田山国家级自然保护区白颈长尾雉的分布格局及其季节变化

任鹏1, 余建平2, 陈小南2, 申小莉3, 宋虓1, 张田田1, 余永泉2, 丁平1, *()   

  1. 1 浙江大学生命科学学院, 杭州 310058
    2 钱江源国家公园生态资源保护中心, 浙江开化 324300
    3 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
  • 收稿日期:2018-07-15 接受日期:2018-10-12 出版日期:2019-01-20
  • 通讯作者: 丁平 E-mail:dingping@zju.edu.cn
  • 基金项目:
    浙江省科技计划(2015C02016)

Seasonal variation in the distribution of Elliot’s pheasant (Syrmaticus ellioti) in Gutianshan National Nature Reserve

Ren Peng1, Yu Jianping2, Chen Xiaonan2, Shen Xiaoli3, Song Xiao1, Zhang Tiantian1, Yu Yongquan2, Ding Ping1, *()   

  1. 1 College of Life Sciences, Zhejiang University, Hangzhou 310058
    2 Center of Ecology and Resources, Qianjiangyuan National Park, Kaihua, Zhejiang 324300
    3 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2018-07-15 Accepted:2018-10-12 Online:2019-01-20
  • Contact: Ding Ping E-mail:dingping@zju.edu.cn

为了解浙江省古田山国家级自然保护区内白颈长尾雉(Syrmaticus ellioti)的分布格局和季节变化, 2014年5月至2016年4月, 我们对其进行了为期2年的网格化监测。共有44个公里网格拍摄到白颈长尾雉, 独立探测数量为211次, 雌雄性比为1 : 1.64。白颈长尾雉主要分布在实验区和缓冲区, 其探测率在常绿落叶阔叶混交林、杉木(Cunninghamia lanceolata)林、针阔叶混交林、人工油茶(Camellia oleifera)林和常绿阔叶林中依次递减, 主要分布在海拔600-800 m。冬、春两季, 白颈长尾雉活动强度和区域相对较小, 而夏、秋两季活动强度和区域相对增加, 其分布在海拔段(F4,12 = 3.76, P < 0.05)和季节间(F3,12 = 3.34, P < 0.05)都存在显著差异。对海拔和气候因子进行回归分析发现, 日平均气温和海拔对白颈长尾雉是否出现均有极显著影响(P < 0.01); 白颈长尾雉月探测率和探测到白颈长尾雉位点的海拔均与月平均气温呈极显著正相关(P < 0.001), 而与月平均降水量无显著线性关系(P > 0.05)。这表明白颈长尾雉的活动在很大程度上受海拔和气温影响, 随月平均气温的升高有向高海拔迁移的趋势。模型选择和多模型推断显示, 最优模型仅保留“100 m内水源”这一个变量, 次优模型是“100 m内水源 × 海拔”, 最优和次优模型的权重分别为0.18和0.14, “100 m内水源”和“海拔”是影响白颈长尾雉在保护区内分布的重要因子, 重要值分别为0.82和0.51。因此, 白颈长尾雉的分布并非仅由某一个或几个环境变量决定, 而是由多个环境变量共同决定。气温的变化和对不同海拔段的选择是导致白颈长尾雉形成不同季节分布格局的原因。

关键词: 红外相机技术, 白颈长尾雉, 分布特征, 气候, 模型选择和多模型推断

Here we studied the seasonal variation in the distribution pattern of Elliot’s pheasant (Syrmaticus ellioti) in Gutianshan National Nature Reserve, in Zhejiang Province, China. From May 2014 to April 2016, Elliot’s pheasants were monitored with camera traps as part of the grid monitoring system. Elliot’s pheasants were detected in 44 1 km × 1 km survey blocks, 211 independent times. The observed sex ratio was F : M = 1 : 1.64. These results showed that Elliot’s pheasant is mainly distributed in the buffer and experimental zones. Within the reserve, the detection rate of Elliot’s pheasant decreased over the gradient from mixed evergreen and deciduous broad leaf forest, Cunninghamia lanceolata forest, mixed coniferous and broad leaf forest to artificial Camellia oleifera forest and evergreen broad leaf forest. Elliot’s pheasant mainly lived at altitudes of 600-800 m. In winter and spring, their activity intensity was lower and the active area of Elliot’s pheasant was relatively smaller compared with the summer and autumn. In short, the distribution between altitudinal intervals (F4,12 = 3.76, P < 0.05) and seasons (F3,12 = 3.34, P < 0.05) differed significantly. Performing a regression analysis on altitudinal intervals and climatic factors showed that the daily average temperature and altitudinal intervals both significantly influenced the presence of Elliot’s pheasant (P < 0.01). Both the monthly detection rate of Elliot’s pheasant and the altitude at which Elliot’s pheasant was detected had a significant positive correlation with the monthly mean temperature (P < 0.001), but had no significant linear relationship with the monthly mean rainfall (P > 0.05). These results showed that the presence of Elliot’s pheasant was largely influenced by altitude and temperature. Elliot’s pheasants tended to move to higher altitude as the average monthly temperature increased. According to the results of model selection and multimodel inference, the optimal model only included by the variable “source of water within 100 meters”, and the suboptimal model was “source of water within 100 meters × altitude”, with weights of 0.18 and 0.14. This means that “source of water within 100 meters” and “altitude” were important factors affecting the distribution of Elliot’s pheasant, whose importance values were 0.82 and 0.51, respectively. Overall, the distribution of Elliot’s pheasant was determined by various environmental variables, rather than one and/or several environmental variables. In addition, the changes in temperature and the range of altitudinal intervals led to the differing seasonal distribution pattern of Elliot’s pheasant.

Key words: camera-trapping, Elliot’s pheasant;, distribution pattern, climate, model selection and multimodel inference

图1

古田山国家级自然保护区内白颈长尾雉分布图"

图2

白颈长尾雉不同季节的探测率"

图3

古田山国家级自然保护区内不同季节白颈长尾雉分布图"

图4

白颈长尾雉在不同海拔段的探测率"

表1

逻辑斯谛回归和线性回归分析结果"

自变量 Independent variable 回归系数
Coefficients
标准误差
Standard error
z P
逻辑斯谛回归 Logistic regression, P < 0.0001
雌 + 雄 Female + male 海拔 Altitude -0.259 0.100 -2.592 0.0095**
日平均气温 Daily average temperature 0.643 0.108 5.937 0.0000***
雌 Female 海拔 Altitude -0.307 0.145 -2.119 0.0341*
日平均气温 Daily average temperature 0.563 0.156 3.6 0.0003***
雄 Male 海拔 Altitude -0.216 0.115 -1.874 0.061
日平均气温 Daily average temperature 0.685 0.129 5.314 0.0000***
线性回归 Linear regression, P < 0.0001
雌 + 雄 Female + male 月平均气温 Month average temperature 6.231 0.980 6.361 0.0000***
月平均降水量 Month average precipitation -1.104 0.980 -1.127 0.273
线性回归 Linear regression, P < 0.0001
海拔 Altitude 月平均气温 Month average temperature 6.107 0.413 14.803 0.0000***
月平均降水量 Month average precipitation 0.000 0.002 0.182 0.856

表2

栖息地特征参数间的相关系数"

生境因子
Habitat factor
植被类型
Vegetation
type
森林起源
Forest origin
乔木郁闭度
Tree canopy
closure
灌木盖度
Shrub coverage
草本盖度
Herbaceous
coverage
100 m内水源
Source of water
in 100 meters
海拔
Altitude (m)
坡位
Position
森林起源 Forest origin -0.415***
乔木郁闭度
Tree canopy closure
0.135* -0.142*
灌木盖度 Shrub coverage 0.146** 0.018 0.111*
草本盖度
Herbaceous coverage
-0.059 0.142* -0.08 0.069
100 m内水源
Source of water in 100 meters
-0.125* 0.032 0.127* 0.082 -0.145**
海拔 Altitude (m) 0.244*** -0.452*** 0.087 0.041 -0.188*** 0.287***
坡位 Position 0.118* -0.092 0.043 -0.195*** -0.056 -0.421*** 0.185***
坡度 Gradient 0.041 0.003 0.181** 0.281*** -0.186*** 0.06 0.154** -0.095

表3

模型平均各参数的组合结果"

模型组合
Model combination
自由度
df
似然对数
Log-Likelihood
AICc Delta 权重
Weight
e 2 -59.12 122.39 0.00 0.18
a × e 3 -58.26 122.80 0.42 0.14
b × e 3 -59.01 124.30 1.91 0.07
d × e 3 -59.01 124.30 1.91 0.07
a × d × e 4 -57.99 124.46 2.07 0.06
c × e 3 -59.12 124.53 2.14 0.06
a 2 -60.33 124.79 2.40 0.05
a × b × e 4 -58.24 124.96 2.57 0.05
a × c × e 4 -58.26 124.99 2.60 0.05
b × d × e 4 -58.85 126.16 3.77 0.03
a × d 3 -60.01 126.30 3.91 0.02
c × d × e 4 -59.00 126.47 4.09 0.02
b × c × e 4 -59.01 126.49 4.10 0.02
a × b × d × e 5 -57.94 126.60 4.22 0.02
a × c × d × e 5 -57.99 126.69 4.30 0.02
a × b 3 -60.26 126.80 4.41 0.02
a × c 3 -60.26 126.80 4.41 0.02
a × b × c × e 5 -58.24 127.20 4.81 0.02
d 2 -62.09 128.32 5.94 0.01
b × c × d × e 5 -58.82 128.36 5.97 0.01
c 2 -62.14 128.42 6.04 0.01
a × b × d 4 -59.98 128.43 6.04 0.01
a × c × d 4 -60.00 128.46 6.07 0.01
b 2 -62.18 128.50 6.11 0.01
a × b × c 4 -60.18 128.84 6.45 0.01
a × b × c × d × e 6 -57.93 128.88 6.49 0.01
c × d 3 -62.08 130.43 8.04 0.00
b × d 3 -62.09 130.46 8.08 0.00
b × c 3 -62.14 130.56 8.17 0.00
a × b × c × d 5 -59.96 130.63 8.24 0.00
b × c × d 4 -62.08 132.62 10.24 0.00

表4

各变量的重要值、模型回归系数及P值"

模型平均 Model averaging 100 m内水源
Source of water in 100 meters
海拔
Altitude
坡度
Gradient
草本盖度
Herbaceous coverage
灌木盖度
Shrub coverage
重要值 Importance value 0.82 0.51 0.30 0.27 0.26
标准化回归系数β
Standardized regression coefficient β
1.026 -0.172 0.096 0.122 0.009
P 0.031* 0.044* 0.299 0.438 0.570
[1] BirdLife International ( 2016) Syrmaticus ellioti. The IUCN Red List of Threatened Species 2016: e.T22679325A92810598. . (accessed on 2018-10-10)
[2] Cabeza M, Moilanen A ( 2001) Design of reserve networks and the persistence of biodiversity. Trends in Ecology & Evolution, 16, 242-248.
doi: 10.1016/S0169-5347(01)02125-5 pmid: 11301153
[3] Cai LY, Xu YP, Jiang PP, Ding P, Yao XH, Xu XR, Wang GB ( 2007) Home range and daily moving distance of Elliot’s pheasant. Journal of Zhejiang University (Science Edition), 34, 679-683. (in Chinese with English abstract)
[ 蔡路昀, 徐言朋, 蒋萍萍, 丁平, 姚小华, 徐向荣, 王国兵 ( 2007) 白颈长尾雉的活动区和日活动距离. 浙江大学学报(理学版), 34, 679-683.]
[4] Chen JH, Huang XF, Lu CH, Yao XH, Yu ZP ( 2009) Spatial niches of Syrmaticus ellioti and Lophura nycthemera in autumn and winter. Chinese Journal of Ecology, 28, 2546-2552. (in Chinese with English abstract)
[ 陈俊豪, 黄晓凤, 鲁长虎, 姚小华, 余泽平 ( 2009) 白颈长尾雉与白鹇秋冬季空间生态位比较. 生态学杂志, 28, 2546-2552.]
[5] Chen SW, Yu JP, Chen XN, Shen XL, Li S, Ma KP ( 2016) Camera-trapping survey on the diversity of mammal and pheasant species in Gutianshan National Nature Reserve, Zhejiang Province. Acta Theriologica Sinica, 36, 292-301. (in Chinese with English abstract)
doi: 10.16829/j.slxb.201603005
[ 陈声文, 余建平, 陈小南, 申小莉, 李晟, 马克平 ( 2016) 利用红外相机网络调查古田山自然保护区的兽类及雉类多样性. 兽类学报, 36, 292-301.]
doi: 10.16829/j.slxb.201603005
[6] Ding P ( 2015) Syrmaticus ellioti. In: Chinese Pheasants (ed. Zheng GM), pp. 261-296. Higher Education Press, Beijing. (in Chinese)
[ 丁平 ( 2015) 白颈长尾雉. 见: 中国雉类(郑光美主编), 261-296页. 高等教育出版社, 北京.]
[7] Ding P, Li Z, Jiang SR, Zhuge Y ( 2002 a) Studies on the factors affecting patch use degree by Elliot’s pheasant. Journal of Zhejiang University (Science Edition), 29, 103-108. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-9497.2002.01.021
[ 丁平, 李智, 姜仕仁, 诸葛阳 ( 2002 a) 白颈长尾雉栖息地小区利用度影响因子研究. 浙江大学学报(理学版), 29, 103-108.]
doi: 10.3321/j.issn:1008-9497.2002.01.021
[8] Ding P, Yang YW, Li Z, Jiang SR, Zhuge Y ( 2001) Vegetation characteristics of habitats used by Elliot’s pheasant. Journal of Zhejiang University (Science Edition), 28, 557-562. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-9497.2001.05.014
[ 丁平, 杨月伟, 李智, 姜仕仁, 诸葛阳 ( 2001) 白颈长尾雉栖息地的植被特征研究. 浙江大学学报(理学版), 28, 557-562.]
doi: 10.3321/j.issn:1008-9497.2001.05.014
[9] Ding P, Yang YW, Li Z, Jiang SR, Zhuge Y ( 2002 b) Studies on the selection of roosting sites of Elliot’s pheasant. Journal of Zhejiang University (Science Edition), 29, 564-568. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-9497.2002.05.015
[ 丁平, 杨月伟, 李智, 姜仕仁, 诸葛阳 ( 2002 b) 白颈长尾雉夜宿地选择研究. 浙江大学学报(理学版), 29, 564-568.]
doi: 10.3321/j.issn:1008-9497.2002.05.015
[10] Ding P, Zhuge Y ( 1988) The study on breeding ecology of Syrmaticus ellioti Swinhoe. Acta Ecologica Sinica, 8, 44-50. (in Chinese with English abstract)
[ 丁平, 诸葛阳 ( 1988) 白颈长尾雉(Syrmaticus ellioti Swinhoe)的生态研究. 生态学报, 8, 44-50.]
[11] Ding P, Zhuge Y ( 1989 a) Syrmaticus ellioti. Chinese Journal of Zoology, 24(2), 39-42. (in Chinese)
[ 丁平, 诸葛阳 ( 1989 a) 白颈长尾雉. 动物学杂志, 24(2), 39-42.]
[12] Ding P, Zhuge Y ( 1989 b) The ecology of rare pheasants in the western areas of Zhejiang Province. Journal of Zhejiang University (Science Edition), 16, 302-309. (in Chinese with English abstract)
[ 丁平, 诸葛阳 ( 1989 b) 浙江西部山区珍稀雉类生态学研究. 浙江大学学报(理学版), 16, 302-309.]
[13] Hu ZH, Yu MJ, Xu XH, Fu HL ( 2004) Castanopsis eyrei community characteristics in Gutianshan Natural Reserve, Zhejiang Province. Chinese Journal of Ecology, 23, 15-18. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-0837.2003.03.006
[ 胡正华, 于明坚, 徐学红, 付海龙 ( 2004) 浙江古田山自然保护区甜槠群落特征研究. 生态学杂志, 23, 15-18.]
doi: 10.3969/j.issn.2095-0837.2003.03.006
[14] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG ( 2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
doi: 10.17520/biods.2016076
[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 ( 2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
doi: 10.17520/biods.2016076
[15] La Sorte FA, Jetz W ( 2010) Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society of London B: Biological Sciences, 277, 3401-3410.
doi: 10.1098/rspb.2010.0612 pmid: 20534610
[16] Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F ( 2011) Global warming and the vulnerability of tropical biota: Where do the thermal specialists live? Biological Conservation, 144, 548-557.
doi: 10.1016/j.biocon.2010.10.010
[17] Li S, Mcshea WJ, Wang DJ, Shao LK, Shi XG ( 2010) The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China. Ibis, 152, 299-309.
doi: 10.1111/j.1474-919x.2009.00989.x
[18] Liu F, Li DQ, Wu JG ( 2012) Using infra-red cameras to survey wildlife in Beijing Songshan National Nature Reserve. Acta Ecologica Sinica, 32, 730-739. (in Chinese with English abstract)
doi: 10.5846/stxb201109071312
[ 刘芳, 李迪强, 吴记贵 ( 2012) 利用红外相机调查北京松山国家级自然保护区的野生动物物种. 生态学报, 32, 730-739.]
doi: 10.5846/stxb201109071312
[19] Liu P, Zhang WW ( 2017) Seasonal changes in habitat selection of Syrmaticus ellioti in Guanshan National Nature Reserve. Acta Ecologica Sinica, 37, 6005-6013. (in Chinese with English abstract)
doi: 10.5846/stxb201606231229
[ 刘鹏, 张微微 ( 2017) 官山自然保护区白颈长尾雉季节性生境选择. 生态学报, 37, 6005-6013.]
doi: 10.5846/stxb201606231229
[20] Lu XL, Jiang ZG, Tang JR, Wang XJ, Xiang DQ, Zhang JP ( 2005) Auto-trigger camera traps for studying giant panda and its sympatric wildlife species. Acta Zoologica Sinica, 51, 495-500.
doi: 10.1360/jos162021
[21] McCain CM, Colwell RK ( 2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 14, 1236-1245.
doi: 10.1111/ele.2011.14.issue-12
[22] Michalski F, Peres CA ( 2007) Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conservation Biology, 21, 1626-1640.
doi: 10.1111/j.1523-1739.2007.00797.x pmid: 18173486
[23] Morrison ML, Marcot BG, Mannan RW ( 1998) Wildlife- Habitat Relationships: Concepts and Applications, 2nd edn. The University of Wisconsin Press, Madison.
[24] O’Brien T, Kinnaird M ( 2008) A picture is worth a thousand words: The application of camera trapping to the study of birds. Bird Conservation International, 18, 144-162.
doi: 10.1017/S0959270908000348
[25] Parmesan C ( 2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics, 37, 637-669.
doi: 10.1146/annurev.ecolsys.37.091305.110100
[26] Parmesan C, Yohe G ( 2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
doi: 10.1038/nature01286
[27] Peng YB, Ding P ( 2005) Factors affecting movement of spring dispersal of Elliot’s pheasants. Zoological Research, 26, 373-378. (in Chinese with English abstract)
doi: 10.3321/j.issn:0254-5853.2005.04.006
[ 彭岩波, 丁平 ( 2005) 白颈长尾雉春季扩散活动的影响因子. 动物学研究, 26, 373-378.]
doi: 10.3321/j.issn:0254-5853.2005.04.006
[28] R Development Core Team ( 2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[29] Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, Derchia F, Edwards TC, Ulliman J, Wright RG ( 1993) GAP analysis: A geographic approach to protection of biological diversity. Wildlife Monographs, 57, 1-41.
doi: 10.1007/BF00048173
[30] Sekercioglu CH, Primack RB, Wormworth J ( 2012) The effects of climate change on tropical birds. Biological Conservation, 148, 1-18.
doi: 10.1016/j.biocon.2011.10.019
[31] Seo C, Thorne JH, Hannah L, Thuiller W ( 2009) Scale effects in species distribution models: Implications for conservation planning under climate change. Biology Letters, 5, 39-43.
doi: 10.1098/rsbl.2008.0476
[32] Sexton JP, McIntyre PJ, Angert AL, Rice KJ ( 2009) Evolution and ecology of species range limits. Annual Review of Ecology and Systematics, 40, 415-436.
doi: 10.1146/annurev.ecolsys.110308.120317
[33] Shi JB, Zheng GM ( 1997) The seasonal changes of habitats of Elliot’s pheasant. Zoological Research, 18, 275-283. (in Chinese with English abstract)
[ 石建斌, 郑光美 ( 1997) 白颈长尾雉栖息地的季节变化. 动物学研究, 18, 275-283.]
[34] Tricia LC, Don ES ( 1999) Using remote photography in wildlife ecology: A review. Wildlife Society Bulletin, 27, 571-581.
doi: 10.2307/3784076
[35] Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F ( 2002) Ecological responses to recent climate change. Nature, 416, 389-395.
doi: 10.1038/416389a
[36] Wang HY, Zhang XY, Zou GH ( 2009) Frequentist model averaging estimation: A review. Journal of Systems Science & Complexity, 22, 732-748.
doi: 10.1007/s11424-009-9198-y
[37] Wiens JJ ( 2011) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2336-2350.
doi: 10.1098/rstb.2011.0059
[38] Xu YP, Zheng JW, Ding P, Jiang PP, Cai LY, Huang XF, Yao XH, Xu XR, Yu ZP ( 2007) Seasonal change in ranging of Elliot’s pheasant and its determining factors in Guanshan National Nature Reserve, Jiangxi. Biodiversity Science, 15, 337-343. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2007.04.002
[ 徐言朋, 郑家文, 丁平, 蒋萍萍, 蔡路昀, 黄晓风, 姚小华, 徐向荣, 余泽平 ( 2007) 官山白颈长尾雉活动区域海拔高度的季节变化及其影响因素. 生物多样性, 15, 337-343.]
doi: 10.3321/j.issn:1005-0094.2007.04.002
[39] Yang SF, Mao YD ( 2008) Temperature change and four seasons division in Zhejiang Province in the last 50 years. Journal of Zhejiang Meteorology, 29(4), 1-6. (in Chinese)
doi: 10.3969/j.issn.1004-5953.2008.04.001
[ 杨诗芳, 毛裕定 ( 2008) 浙江省近50年气温变化及四季划分. 浙江气象, 29(4), 1-6.]
doi: 10.3969/j.issn.1004-5953.2008.04.001
[40] Yang YW, Ding P, Jiang SR, Zhuge Y ( 1999) Factors affecting habitat used by Elliot’s pheasant (Syrmaticus ellioti) in mixed coniferous and broadleaf forests. Acta Zoologica Sinica, 45, 279-286. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5507.1999.03.006
[ 杨月伟, 丁平, 姜仕仁, 诸葛阳 ( 1999) 针阔混交林内白颈长尾雉栖息地利用的影响因子研究. 动物学报, 45, 279-286.]
doi: 10.3969/j.issn.1674-5507.1999.03.006
[41] Yasuda M ( 2004) Monitoring diversity and abundance of mammals with camera traps: A case study on mount Tsukuba, central Japan. Mammal Study, 29, 37-46.
doi: 10.3106/mammalstudy.29.37
[42] Yu MJ, Hu ZH, Yu JP, Ding BY, Fang T ( 2001) Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. Journal of Zhejiang University (Agriculture and Life Sciences), 27, 375-380. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-9209.2001.04.007
[ 于明坚, 胡正华, 余建平, 丁炳扬, 方腾 ( 2001) 浙江古田山自然保护区森林植被类型. 浙江大学学报(农业与生命科学版), 27, 375-380.]
doi: 10.3321/j.issn:1008-9209.2001.04.007
[43] Yu ZY, Wu LH, Gao DW, Fan GF ( 2014) Investigation of methods for season division in Zhejiang Province. Meteorological Science and Technology, 42, 474-481. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-6345.2014.03.019
[ 郁珍艳, 吴利红, 高大伟, 樊高峰 ( 2014) 浙江省四季划分方法探讨. 气象科技, 42, 474-481.]
doi: 10.3969/j.issn.1671-6345.2014.03.019
[44] Zhao YZ, Wang ZC, Xu JL, Luo X, An LD ( 2013) Activity rhythm and behavioral time budgets of wild Reeves’s pheasant (Syrmaticus reevesii) using infrared camera. Acta Ecologica Sinica, 33, 6021-6027. (in Chinese with English abstract)
doi: 10.5846/stxb201306041335
[ 赵玉泽, 王志臣, 徐基良, 罗旭, 安丽丹 ( 2013) 利用红外照相技术分析野生白冠长尾雉活动节律及时间分配. 生态学报, 33, 6021-6027.]
doi: 10.5846/stxb201306041335
[1] 白娥 薛冰. (2020) 土地利用与土地覆盖变化对生态系统的影响综述. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[2] 马亦生,马青青,何念军,朱大鹏,赵凯辉,刘红彩,李帅,孙亮,唐流斌. (2020) 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性. 生物多样性, 28(2): 226-230.
[3] 白杨,陈声文,钱海源,余顺海,徐谊明,张芷昕,沈超,陈雨奇,张美琪,余建平,朱瑞良. (2020) 钱江源国家公园叶附生苔类植物的物种多样性. 生物多样性, 28(2): 231-237.
[4] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[5] 许光耀, 李洪远, 莫训强, 孟伟庆. (2019) 中国归化植物组成特征及其时空分布格局分析. 植物生态学报, 43(7): 601-610.
[6] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. (2019) 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律. 生物多样性, 27(6): 638-647.
[7] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[8] 黄玫, 王娜, 王昭生, 巩贺. (2019) 磷影响陆地生态系统碳循环过程及模型表达方法. 植物生态学报, 43(6): 471-479.
[9] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[10] 刘晓彤, 袁泉, 倪健. (2019) 中国植物分布模拟研究现状. 植物生态学报, 43(4): 273-283.
[11] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27(4): 380-387.
[12] 刘程竹, 贾娟, 戴国华, 马田, 冯晓娟. (2019) 中性糖在土壤中的来源与分布特征. 植物生态学报, 43(4): 284-295.
[13] 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. (2019) 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 43(4): 320-330.
[14] 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. (2019) 锡林郭勒植被NDVI时空变化及其驱动力定量分析. 植物生态学报, 43(4): 331-341.
[15] 张富广, 曾彪, 杨太保. (2019) 气候变化背景下近30年祁连山高寒荒漠分布时空变化. 植物生态学报, 43(4): 305-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed