生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 23369. DOI: 10.17520/biods.2023369 cstr: 32101.14.biods.2023369
• 研究报告 • 下一篇
卢佳玉1, 石小亿1, 多立安1, 王天明2,3(), 李治霖1,*()()
收稿日期:
2023-10-04
接受日期:
2024-04-20
出版日期:
2024-08-20
发布日期:
2024-07-11
通讯作者:
*E-mail: lizhilin0319@tjnu.edu.cn
基金资助:
Jiayu Lu1, Xiaoyi Shi1, Li’an Duo1, Tianming Wang2,3(), Zhilin Li1,*()()
Received:
2023-10-04
Accepted:
2024-04-20
Online:
2024-08-20
Published:
2024-07-11
Contact:
*E-mail: lizhilin0319@tjnu.edu.cn
Supported by:
摘要:
城市化进程可导致自然栖息地大量丧失和破碎化, 继而影响野生动物的活动节律和生态位关系。因此对各物种活动节律和生态位关系的精准评价是理解城市生物多样性维持机制的关键基础。为探究地栖哺乳动物昼夜活动节律以及物种之间的时间生态位关系, 作者于2019年11月至2021年11月在天津城镇区域架设60台红外相机进行调查。本研究从平均活动时间、聚集度、方差、活跃度水平和活动属性等角度评价了狗(Canis lupus)、猫(Felis catus)、黄鼬(Mustela sibirica)、东北刺猬(Erinaceus europaeus)、蒙古兔(Lepus tolai)和亚洲狗獾(Meles leucurus)等物种的昼夜活动特征, 同时使用核密度分析评价了物种的时间生态位重叠程度, 并利用广义加性模型探究城市化水平对时间生态位重叠系数的影响趋势。本研究共获得有效相机监测天数11,517天, 监测到地栖哺乳动物独立事件数2,428个。结果表明, 狗表现出偏昼行性活动特征; 黄鼬、东北刺猬和亚洲狗獾表现出夜行性或偏夜行性活动特征, 猫和蒙古兔则为间歇性活动。蒙古兔表现出最高的活跃度水平(0.68, 95% CI: 0.56–0.73), 亚洲狗獾的活跃度水平最低(0.40, 95% CI: 0.29–0.44)。80%的物种对表现出高度的时间生态位重叠, 但物种在昼夜活动的时间分配上均存在显著差异。猫-黄鼬表现出最高的时间生态位重叠程度(
卢佳玉, 石小亿, 多立安, 王天明, 李治霖 (2024) 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价. 生物多样性, 32, 23369. DOI: 10.17520/biods.2023369.
Jiayu Lu, Xiaoyi Shi, Li’an Duo, Tianming Wang, Zhilin Li (2024) Circadian rhythms of urban terrestrial mammals in Tianjin based on camera trapping method. Biodiversity Science, 32, 23369. DOI: 10.17520/biods.2023369.
物种 Species | 平均活动时间 Mean vector | 聚集度 Concentration | 方差 Variance (S2) | 活跃度水平 Activity level | 夜晚观测数 Night observations | 总事件数 Total events | β指数 Beta index | 活动属性 Activity attribute |
---|---|---|---|---|---|---|---|---|
狗 Canis lupus | 13:10 (12:11-14:09) | 0.60 | 0.72 | 0.40 (0.33-0.48) | 85 | 339 | 25% | 偏昼行性 Mostly diurnal |
猫 Felis silvestris | 22:02 (20:54-23:10) | 0.41 | 0.80 | 0.67 (0.55-0.73) | 330 | 527 | 63% | 间歇性 Cathemeral |
黄鼬 Mustela sibirica | 23:05 (21:57-00:13) | 0.66 | 0.69 | 0.53 (0.41-0.60) | 161 | 212 | 76% | 偏夜行性 Mostly nocturnal |
东北刺猬 Erinaceus amurensis | 00:19 (23:59-00:40) | 1.24 | 0.47 | 0.43 (0.37-0.47) | 661 | 723 | 91% | 夜行性 Nocturnal |
蒙古兔 Lepus tolai | 00:40 (23:07-02:13) | 0.30 | 0.85 | 0.68 (0.56-0.73) | 319 | 530 | 60% | 间歇性 Cathemeral |
亚洲狗獾 Meles leucurus | 23:31 (22:50-00:11) | 1.86 | 0.33 | 0.40 (0.29-0.44) | 96 | 97 | 99% | 夜行性 Nocturnal |
表1 天津市地栖哺乳动物活动节律指标统计
Table 1 Statistics of activity rhythm of terrestrial mammals in Tianjin
物种 Species | 平均活动时间 Mean vector | 聚集度 Concentration | 方差 Variance (S2) | 活跃度水平 Activity level | 夜晚观测数 Night observations | 总事件数 Total events | β指数 Beta index | 活动属性 Activity attribute |
---|---|---|---|---|---|---|---|---|
狗 Canis lupus | 13:10 (12:11-14:09) | 0.60 | 0.72 | 0.40 (0.33-0.48) | 85 | 339 | 25% | 偏昼行性 Mostly diurnal |
猫 Felis silvestris | 22:02 (20:54-23:10) | 0.41 | 0.80 | 0.67 (0.55-0.73) | 330 | 527 | 63% | 间歇性 Cathemeral |
黄鼬 Mustela sibirica | 23:05 (21:57-00:13) | 0.66 | 0.69 | 0.53 (0.41-0.60) | 161 | 212 | 76% | 偏夜行性 Mostly nocturnal |
东北刺猬 Erinaceus amurensis | 00:19 (23:59-00:40) | 1.24 | 0.47 | 0.43 (0.37-0.47) | 661 | 723 | 91% | 夜行性 Nocturnal |
蒙古兔 Lepus tolai | 00:40 (23:07-02:13) | 0.30 | 0.85 | 0.68 (0.56-0.73) | 319 | 530 | 60% | 间歇性 Cathemeral |
亚洲狗獾 Meles leucurus | 23:31 (22:50-00:11) | 1.86 | 0.33 | 0.40 (0.29-0.44) | 96 | 97 | 99% | 夜行性 Nocturnal |
图3 天津市6种地栖哺乳动物活动节律重叠图及重叠系数。*表示两物种昼夜尺度活动节律存在显著性差异。
Fig. 3 Overlap of activity patterns and the overlap coefficients between six terrestrial mammals in Tianjin. * indicates significant difference in circadian patterns.
图4 城市化水平对地栖哺乳动物时间生态位重叠的影响。括号中数字表示时间生态位重叠系数对城市化水平的最佳响应尺度。
Fig. 4 The influence of urbanization level on temporal overlap between terrestrial mammals. The number inside the brackets indicate the optimal scale of the temporal overlap to the urbanization level.
[1] | Abramowitz M, Stegun IA (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55, Washington, D.C. |
[2] |
Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs AK, Herzog C, Katti M, La Sorte FA, Williams NSG, Zipperer W (2016) Hierarchical filters determine community assembly of urban species pools. Ecology, 97, 2952-2963.
DOI PMID |
[3] | Berger A, Lozano B, Barthel LMF, Schubert N (2020) Moving in the dark-evidence for an influence of artificial light at night on the movement behaviour of European hedgehogs (Erinaceus europaeus). Animals, 10, 1306. |
[4] | Bu HL, Hopkins JB, Li S, Wang DJ (2023) Seasonal distribution and activity patterns of mesopredators and their prey in Southwest China. Journal of Mammalogy, 104, 941-950. |
[5] | Bu HL, Wang F, McShea WJ, Lu Z, Wang DJ, Li S (2016) Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China. PLoS ONE, 11, e0164271. |
[6] | Campos CB, Esteves CF, Ferraz KMPMB, Crawshaw PG Jr, Verdade LM (2007) Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. Journal of Zoology, 273, 14-20. |
[7] | Capellà Miternique H, Gaunet F (2020) Coexistence of diversified dog socialities and territorialities in the city of Concepción, Chile. Animals, 10, 298. |
[8] |
Chen YX, Xiao ZS, Li M, Wang XW, He CX, He GP, Li HS, Shi SJ, Xiang ZF (2016) Preliminary survey for the biodiversity of mammal and bird using camera traps in the west slope of mid-section Mt. Gaoligong. Acta Theriologica Sinica, 36, 302-312. (in Chinese with English abstract)
DOI |
[陈奕欣, 肖治术, 李明, 王新文, 何臣相, 何贵品, 李海曙, 施顺金, 向左甫 (2016) 利用红外相机对高黎贡山中段西坡兽类和鸟类多样性初步调查. 兽类学报, 36, 302-312.] | |
[9] | Clucas B, Marzluff JM (2011) Coupled relationships between humans and other organisms in urban areas. In: Urban Ecology: Patterns, Processes, and Applications, pp. 135-147. Oxford University Press, Oxford. |
[10] | Cruz P, Iezzi ME, De Angelo C, Varela D, Di Bitetti MS, Paviolo A (2018) Effects of human impacts on habitat use, activity patterns and ecological relationships among medium and small felids of the Atlantic Forest. PLoS ONE, 13, e0200806. |
[11] | Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P (2016) Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure? Journal of Zoology, 298, 128-138. |
[12] | Díez Valle C, Sánchez García-Abad C, Pérez Garrido JA, Bartolomé DJ, González Eguren V, Wheatley C, Alonso de la Varga ME, Gaudioso Lacasa VR (2013) Behavioural activity of wild rabbits (Oryctolagus cuniculus) under semi-natural rearing systems: Establishing a seasonal pattern. World Rabbit Science, 21, 263-270. |
[13] | Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosystems, 9, 5-12. |
[14] | Dominoni DM, Borniger JC, Nelson RJ (2016) Light at night, clocks and health: From humans to wild organisms. Biology Letters, 12, 20160015. |
[15] | Farris ZJ, Gerber BD, Karpanty S, Murphy A, Andrianjakarivelo V, Ratelolahy F, Kelly MJ (2015) When carnivores roam: Temporal patterns and overlap among Madagascar’s native and exotic carnivores. Journal of Zoology, 296, 45-57. |
[16] | Frey S, Volpe JP, Heim NA, Paczkowski J, Fisher JT (2020) Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos, 129, 1128-1140. |
[17] | Gallo T, Fidino M, Gerber B, Ahlers AA, Angstmann JL, Amaya M, Concilio AL, Drake D, Gay D, Lehrer EW, Murray MH, Ryan TJ, St. Clair CC, Salsbury CM, Sander HA, Stankowich T, Williamson J, Belaire JA, Simon K, Magle SB (2022) Mammals adjust diel activity across gradients of urbanization. eLife, 11, e74756. |
[18] | Gatto R, Jammalamadaka SR (2007) The generalized von Mises distribution. Statistical Methodology, 4, 341-353. |
[19] |
Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science, 360, 1232-1235.
DOI PMID |
[20] | Gehrt SD, Anchor C, White LA (2009) Home range and landscape use of coyotes in a metropolitan landscape: Conflict or coexistence? Journal of Mammalogy, 90, 1045-1057. |
[21] | Gómez H, Wallace RB, Ayala G, Tejada R (2005) Dry season activity periods of some Amazonian mammals. Studies on Neotropical Fauna and Environment, 40, 91-95. |
[22] | Grubisic M, van Grunsven RH (2021) Artificial light at night disrupts species interactions and changes insect communities. Current Opinion in Insect Science, 47, 136-141. |
[23] | Güneralp B, Seto KC (2013) Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environmental Research Letters, 8, 014025. |
[24] | Hoffmann CO, Gottschang JL (1977) Numbers, distribution, and movements of a raccoon population in a suburban residential community. Journal of Mammalogy, 58, 623-636. |
[25] | Horn JA, Mateus-Pinilla N, Warner RE, Heske EJ (2011) Home range, habitat use, and activity patterns of free-roaming domestic cats. The Journal of Wildlife Management, 75, 1177-1185. |
[26] |
Jonathan Davies T, Shai MR, Barraclough TG, Gittleman JL (2007) Species co-existence and character divergence across carnivores. Ecology Letters, 10, 146-152.
PMID |
[27] | Karanth KU, Srivathsa A, Vasudev D, Puri M, Parameshwaran R, Kumar NS (2017) Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B: Biological Sciences, 284, 20161860. |
[28] |
Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science, 316, 1866-1869.
DOI PMID |
[29] | Karelus DL, McCown JW, Scheick BK, van de Kerk M, Bolker BM, Oli MK (2017) Effects of environmental factors and landscape features on movement patterns of Florida black bears. Journal of Mammalogy, 98, 1463-1478. |
[30] | Kawanishi K, Sunquist ME (2008) Food habits and activity patterns of the Asiatic golden cat (Catopuma temminckii) and dhole (Cuon alpinus) in a primary rainforest of Peninsular Malaysia. Mammal Study, 33, 173-177. |
[31] | Khan A, Ahmed H, Simsek S, Afzal MS, Cao JP (2020) Spread of cystic echinococcosis in Pakistan due to stray dogs and livestock slaughtering habits: Research priorities and public health importance. Frontiers in Public Health, 7, 412. |
[32] | Kovach WL (2011) Oriana-circular Statistics for Windows, version 4. Kovach Computing Services, Pentraeth. |
[33] | Krauze-Gryz D, Gryz JB, Goszczyński J, Chylarecki P, ̇Zmihorski M (2012) The good, the bad, and the ugly: Space use and intraguild interactions among three opportunistic predators—cat (Felis catus), dog (Canis lupus familiaris), and red fox (Vulpes vulpes)—under human pressure. Canadian Journal of Zoology, 90, 1402-1413. |
[34] | Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34, 153-181. |
[35] |
Kumar Swain R, Pati AK (2019) Circadian rhythm in behavioral activities and diurnal abundance of stray street dogs in the city of Sambalpur, Odisha, India. Chronobiology International, 36, 1658-1670.
DOI PMID |
[36] | Larrucea ES, Brussard PF (2009) Diel and seasonal activity patterns of pygmy rabbits (Brachylagus idahoensis). Journal of Mammalogy, 90, 1176-1183. |
[37] |
Lewis JS, Bailey LL, VandeWoude S, Crooks KR (2015) Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecology and Evolution, 5, 5946-5961.
DOI PMID |
[38] | Leyk S, Gaughan AE, Adamo SB, de Sherbinin A, Balk D, Freire S, Rose A, Stevens FR, Blankespoor B, Frye C (2019) The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth System Science Data, 11, 1385-1409. |
[39] |
Li WD, Hu KJ, Zeng YL, Xu RS, Zhang P (2019) Camera trap survey on the diversity of mammals and birds in Shenzhen, Guangdong Province. Acta Theriologica Sinica, 39, 565-574. (in Chinese with English abstract)
DOI |
[李伟东, 胡凯津, 曾毅龙, 徐溶霜, 张鹏 (2019) 利用红外相机对深圳野生兽类和鸟类多样性的调查. 兽类学报, 39, 565-574.] | |
[40] | Li ZL, Duo LA, Li S, Wang TM (2021) Competition and coexistence among terrestrial mammalian carnivores. Biodiversity Science, 29, 81-97. (in Chinese with English abstract) |
[李治霖, 多立安, 李晟, 王天明 (2021) 陆生食肉动物竞争与共存研究概述. 生物多样性, 29, 81-97.] | |
[41] | Li ZL, Shi XY, Lu JY, Fu XH, Fu Y, Cui YT, Chen L, Duo LA, Wang L, Wang TM (2023) Assessing mammal population densities in response to urbanization using camera trap distance sampling. Ecology and Evolution, 13, e10634. |
[42] | Ling SY, Gao ZY, Ma C, You HZ (2022) Estimation of net primary productivity of vegetation and vegetation carbon sink in Tianjin Area based on CASA model. Tianjin Agricultural Sciences, 28(12), 69-75, 81. (in Chinese with English abstract) |
[凌思源, 高子滢, 马闯, 尤海舟 (2022) 基于CASA模型的天津地区植被净初级生产力及植被碳汇量估测. 天津农业科学, 28(12), 69-75, 81.] | |
[43] | Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences, USA, 115, E10397-E10406. |
[44] | Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: Past, present, and future. Biological Conservation, 155, 23-32. |
[45] | Massara RL, de Oliveira Paschoal AM, Bailey LL, Doherty Jr PF, de Frias Barreto M, Chiarello AG (2018) Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mammalian Biology, 92, 86-93. |
[46] |
Massei G, Coats J, Lambert MS, Pietravalle S, Gill R, Cowan D (2018) Camera traps and activity signs to estimate wild boar density and derive abundance indices. Pest Management Science, 74, 853-860.
DOI PMID |
[47] | Meredith M, Ridout M (2018) Overview of the overlap package. R Project. 1-9. |
[48] | Miao RZ, Liu G, Bi JJ, Zhang HJ, Chen XS, Zhu HQ (2023) Niche differentiation among of three species of Mustelidae in Qingsong Forest area of Shulan City, Jilin Province. Chinese Journal of Zoology, 58, 30-42. (in Chinese with English abstract) |
[苗润泽, 刘庚, 毕靖吉, 张宏静, 陈旭升, 朱洪强 (2023) 吉林省舒兰市青松林区三种鼬科动物生态位的差异. 动物学杂志, 58, 30-42.] | |
[49] | Mori E, Paniccia C, Munkhtsog B, Cicero M, Augugliaro C (2021) Temporal overlap among small- and medium-sized mammals in a grassland and a forest-alpine meadow of Central Asia. Mammalian Biology, 101, 153-162. |
[50] |
Munn RGK, Tyree SM, McNaughton N, Bilkey DK (2015) The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability. Frontiers in Behavioral Neuroscience, 9, 61.
DOI PMID |
[51] | Murray MH, St. Clair CC (2015) Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behavioral Ecology, 26, 1520-1527. |
[52] |
Nakabayashi M, Kanamori T, Matsukawa A, Tangah J, Tuuga A, Malim PT, Bernard H, Ahmad AH, Matsuda I, Hanya G (2021) Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia. Scientific Reports, 11, 19819.
DOI PMID |
[53] | Nouvellet P, Rasmussen GSA, Macdonald DW, Courchamp F (2012) Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. Journal of Zoology, 286, 179-184. |
[54] | O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131-139. |
[55] | Parsons AW, Rota CT, Forrester T, Baker-Whatton MC, McShea WJ, Schuttler SG, Millspaugh JJ, Kays R (2019) Urbanization focuses carnivore activity in remaining natural habitats, increasing species interactions. Journal of Applied Ecology, 56, 1894-1904. |
[56] | Pesaresi M, Politis P (2022) GHS-BUILT-S R2022A-GHS built-up surface grid, derived from sentinel-2 composite and landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) Sevilla, Spain. |
[57] | Qiao Z, He T, Lu YS, Sun ZY, Xu XL, Yang J (2022) Quantifying the contribution of land use change based on the effects of global climate change and human activities on urban thermal environment in the Beijing-Tianjin-Hebei urban agglomeration. Geographical Research, 41, 1932-1947. (in Chinese with English abstract) |
[乔治, 贺曈, 卢应爽, 孙宗耀, 徐新良, 杨俊 (2022) 全球气候变化背景下基于土地利用的人类活动对城市热环境变化归因分析——以京津冀城市群为例. 地理研究, 41, 1932-1947.]
DOI |
|
[58] | Ramos-Rendón AK, Gual-Sill F, Cervantes FA, González- Salazar C, García-Morales R, Martínez-Meyer E (2023) Assessing the impact of free-ranging cats (Felis silvestris catus) and dogs (Canis lupus familiaris) on wildlife in a natural urban reserve in Mexico City. Urban Ecosystems, 26, 1341-1354. |
[59] | Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337. |
[60] | Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conservation Biology, 17, 566-576. |
[61] | Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5, 1170-1179. |
[62] |
Santini L, González-Suárez M, Russo D, Gonzalez-Voyer A, von Hardenberg A, Ancillotto L (2019) One strategy does not fit all: Determinants of urban adaptation in mammals. Ecology Letters, 22, 365-376.
DOI PMID |
[63] |
Schell CJ (2018) Urban evolutionary ecology and the potential benefits of implementing genomics. Journal of Heredity, 109, 138-151.
DOI PMID |
[64] | Schmidt K, Nakanishi N, Izawa M, Okamura M, Watanabe S, Tanaka S, Doi T (2009) The reproductive tactics and activity patterns of solitary carnivores: The Iriomote cat. Journal of Ethology, 27, 165-174. |
[65] | Schoener TW (1974) The compression hypothesis and temporal resource partitioning. Proceedings of the National Academy of Sciences, USA, 71, 4169-4172. |
[66] | Sha T, Zhang WH, Liu XC (2009) Floristic analysis of seed plants in Tianjin. Plant Research, 29, 96-102. (in Chinese with English abstract) |
[沙汀, 张文辉, 刘新成 (2009) 天津市种子植物区系成分分析. 植物研究, 29, 96-102.]
DOI |
|
[67] | Smith JA, Thomas AC, Levi T, Wang YW, Wilmers CC (2018) Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos, 127, 890-901. |
[68] | Smith K, Venter JA, Peel M, Keith M, Somers MJ (2023) Temporal partitioning and the potential for avoidance behaviour within South African carnivore communities. Ecology and Evolution, 13, e10380. |
[69] | van Schaik CP, Griffiths M (1996) Activity periods of Indonesian rain forest mammals. Biotropica, 28, 105-112. |
[70] | Wang P, Zhou EH, Zhang K, Wang DY, Li YH, Hu J (2022) Spatial and temporal niche differentiation of Lthaginis cruentus and Tragopan temminckii in the Xiaoxiangling Mountains. Sichuan Journal of Zoology, 41, 416-424. (in Chinese with English abstract) |
[王芃, 周恩华, 张勘, 王大勇, 李艳红, 胡杰 (2022) 小相岭山系血雉与红腹角雉的时空生态位分化. 四川动物, 41, 416-424.] | |
[71] | Wang XL (2018) Study on change trend of precipitation and evaporation in Tianjin. Water Resources Development and Management, 16(7), 8-11. (in Chinese with English abstract) |
[王现领 (2018) 天津市降水量及蒸发量变化趋势研究. 水资源开发与管理, 16(7), 8-11.] | |
[72] | Wang YH, Zhao QQ, Diao YX, Gu BJ, Weng Y, Zhang ZJ, Chen YB, Wang F (2023) Diel activity, habitat utilization, and response to anthropogenic interference of small Indian civets (Viverricula indica) in Shanghai urban areas based on camera trapping. Biodiversity Science, 31, 22294. (in Chinese with English abstract) |
[王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放 (2023) 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应. 生物多样性, 31, 22294.]
DOI |
|
[73] | Wang YW, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biological Conservation, 190, 23-33. |
[74] | Wen XY, Cheng XT, Dong YQ, Wang QS, Lin X (2020) Analysis of the activity rhythms of the great gerbil (Rhombomys opimus) and its predators and their correlations based on infrared camera technology. Global Ecology and Conservation, 24, e01337. |
[75] | Wood S, Wood MS (2015) Package ‘mgcv’. R Package Version, 1 (29), 729. |
[76] |
Yin WW, Fu ZF, Gao GF (2021) Progress and prospects of dog-mediated rabies elimination in China. China CDC Weekly, 3, 831-834.
DOI PMID |
[77] | Zhang X, Liu LY, Chen XD, Gao Y, Xie S, Mi J (2021) GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. . Earth System Science Data, 13, 2753-2776. |
[78] | Zhao GJ, Yang HT, Xie B, Gong YN, Ge JP, Feng LM (2020) Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Global Ecology and Conservation, 21, e00897. |
[1] | 李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉. 城市发展对鱼类功能多样性的影响: 以超大城市北京为例[J]. 生物多样性, 2024, 32(8): 24150-. |
[2] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[3] | 李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放. 上海城市环境中貉的食性分析及家域范围内的栖息地选择[J]. 生物多样性, 2024, 32(8): 24131-. |
[4] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[5] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[6] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[7] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[8] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[9] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[10] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[11] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[12] | 邓雪琴, 刘统, 刘天时, 徐恺, 姚松, 黄小群, 肖治术. 河南内乡宝天曼国家级自然保护区豹猫及其潜在猎物之间日活动节律的季节性[J]. 生物多样性, 2022, 30(9): 22263-. |
[13] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[14] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[15] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn