生物多样性 ›› 2025, Vol. 33 ›› Issue (2): 24442. DOI: 10.17520/biods.2024442 cstr: 32101.14.biods.2024442
张颂琪1, 陆义1,2, 陈炳耀1, 杨光1, 王彦平1(), 陈传武1,*(
)(
)
收稿日期:
2024-10-11
接受日期:
2025-01-17
出版日期:
2025-02-20
发布日期:
2025-03-02
通讯作者:
*E-mail: chencw@nnu.edu.cn
基金资助:
Zhang Songqi1, Lu Yi1,2, Chen Bingyao1, Yang Guang1, Wang Yanping1(), Chen Chuanwu1,*(
)(
)
Received:
2024-10-11
Accepted:
2025-01-17
Online:
2025-02-20
Published:
2025-03-02
Contact:
*E-mail: chencw@nnu.edu.cn
Supported by:
摘要:
全球共有94种鲸豚类动物, 它们是哺乳动物中最神秘和最濒危的类群之一。在由陆生向水生生活转变的过程中, 鲸豚类演化出了众多适应水生环境的形态、生活史和生态学特征。然而, 全球范围内尚缺乏完备的鲸豚类特征数据库。本研究通过系统查阅书籍、文献等数据资源, 收集整理了鲸豚类38个特征数据, 包括15个形态、12个生活史和11个生态学特征参数。其中, 形态学特征参数的完整度为72.15%-100.00%, 生活史特征参数的完整度为17.72%-100.00%, 生态学特征参数的完整度为25.32%-100.00%。此外, 基于特征数据完整度, 结合系统发育线性回归模型的分析表明, 描述时间越早及近岸分布物种往往具有更高的数据完整度。本数据集为开展鲸豚类生态学、保护生物学和进化生物学研究提供了重要的基础信息, 同时为推进区域及全球性的鲸豚类保护生物学工作提供了重要的数据参考。
数据库(集)基本信息简介
数据库(集)名称 | 全球鲸豚类形态、生活史和生态学特征数据集 |
---|---|
作者 | 张颂琪, 陆义, 陈炳耀, 杨光, 王彦平, 陈传武 |
通讯作者 | 陈传武(chencw@nnu.edu.cn) |
时间范围 | 截止到2024年12月 |
地理区域 | 全球 |
文件大小 | 1.4 MB |
数据格式 | *.xlsx |
数据链接 | https://doi.org/10.57760/sciencedb.j00152.00007 https://www.biodiversity-science.net/fileup/1005-0094/DATA/2024442.zip |
数据库(集)组成 | 数据集共包括1个数据文件和1个数据描述文件, 包括全球94种鲸豚类的38个物种特征。 |
中图分类号:
张颂琪, 陆义, 陈炳耀, 杨光, 王彦平, 陈传武 (2025) 全球鲸豚类形态、生活史和生态学特征数据集. 生物多样性, 33, 24442. DOI: 10.17520/biods.2024442.
Zhang Songqi, Lu Yi, Chen Bingyao, Yang Guang, Wang Yanping, Chen Chuanwu (2025) A dataset on the morphological, life-history, and ecological traits of cetaceans worldwide. Biodiversity Science, 33, 24442. DOI: 10.17520/biods.2024442.
图1 全球94种鲸豚类物种的谱系树, 涵盖14个科。树端方格为IUCN濒危物种红色名录等级, 物种名颜色梯度代表特征参数完整度, 树内颜色块代表不同科。
Fig. 1 The phylogenetic tree of 94 cetacean species worldwide encompasses 14 family groups. The square grids at the tips of the tree denote the extinction risk categories according to the IUCN Red List of Threatened Species. The color gradient of the species names represents the completeness of their traits, while the colored blocks within the tree represent the various families.
图5 多变量模型在95%置信区间内预测影响物种特征数据完整性的5个因子的显著程度。左图(A)为包括描述时间的分析结果, 右图(B)为去掉描述时间后剩余4个变量的显著程度。实心圆点表示估计值, 误差条及括号内数值表示95%置信区间(CI)。
Fig. 5 The multivariate model predicts the significance of different factors affecting the completeness of species trait data within a 95% confidence interval. The left graph (A) shows the analysis results including the description time, while the right graph (B) shows the significance of the remaining four variables after removing the description time. Solid circles represent the estimated values, and the error bars as well as the values in the brackets represent the confidence intervals.
[1] | Akinwande MO, Dikko HG, Samson A (2015) Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics, 5, 754-767. |
[2] |
Albouy C, Delattre V, Donati G, Frölicher TL, Albouy-Boyer S, Rufino M, Pellissier L, Mouillot D, Leprieur F (2020) Global vulnerability of marine mammals to global warming. Scientific Reports, 10, 548.
DOI PMID |
[3] | Berta A (2015) Whales, Dolphins, and Porpoises: A Natural History and Species Guide. University of Chicago Press, Chicago. |
[4] | Berta A(translated by Li SH, Xue TF) (2022) Whales, Dolphins, and Porpoises: A Natural History and Species Guide. Beijing Art and Photography Publishing House, Beijing. (in Chinese) |
[ 李松海, 薛天飞 (译) (2022) 图说鲸类百科. 北京美术摄影出版社, 北京.] | |
[5] |
Braulik GT, Archer FI, Khan U, Imran M, Sinha RK, Jefferson TA, Donovan C, Graves JA (2021) Taxonomic revision of the South Asian River dolphins (Platanista): Indus and Ganges River dolphins are separate species. Marine Mammal Science, 37, 1022-1059.
DOI |
[6] | Butt N, Halpern BS, O’Hara CC, Allcock AL, Polidoro B, Sherman S, Byrne M, Birkeland C, Dwyer RG, Frazier M, Woodworth BK, Arango CP, Kingsford MJ, Udyawer V, Hutchings P, Scanes E, McClaren EJ, Maxwell SM, Diaz-Pulido G, Dugan E, Simmons BA, Wenger AS, Linardich C, Klein CJ (2022) A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere, 13, e3919. |
[7] | Carroll EL, McGowen MR, McCarthy ML, Marx FG, Aguilar N, Dalebout ML, Dreyer S, Gaggiotti OE, Hansen SS, van Helden A, Onoufriou AB, Baird RW, Baker CS, Berrow S, Cholewiak D, Claridge D, Constantine R, Davison NJ, Eira C, Fordyce RE, Gatesy J, Greg Hofmeyr GJ, Martín V, Mead JG, Mignucci-Giannoni AA, Morin PA, Reyes C, Rogan E, Rosso M, Silva MA, Springer MS, Steel D, Olsen MT (2021) Speciation in the deep:Genomics and morphology reveal a new species of beaked whale Mesoplodon eueu. Proceedings of the Royal Society B: Biological Sciences, 288, 20211213. |
[8] | Carwardine M (2020) Handbook of Whales, Dolphins and Porpoises. Bloomsbury Publishing, London. |
[9] | Carwardine M (translated by Zhu Q, Zeng QH, Liu YX, Wang YY, Lian YL, Wu ZR, Chen MY, Li YP) (2024) Handbook of Whales, Dolphins and Porpoises. Beijing Science and Technology Publishing House, Beijing. (in Chinese) |
[ 祝茜, 曾千慧, 刘一新, 王旖颖, 连玉岭, 吴中锐, 陈美颖, 李玉鹏 (译) (2024) 鲸豚百科全书: 世界上的鲸、海豚与鼠海豚. 北京科学技术出版社, 北京.] | |
[10] | Chen CW, Jefferson TA, Chen BY, Wang YP (2022) Geographic range size, water temperature, and extrinsic threats predict the extinction risk in global cetaceans. Global Change Biology, 28, 6541-6555. |
[11] | Dalebout ML, Baker CS, Steel D, Thompson K, Robertson KM, Chivers SJ, Perrin WF, Goonatilake M, Anderson RC, Mead JG, Potter CW, Thompson L, Jupiter D, Yamada TK (2014) Resurrection of Mesoplodon hotaula Deraniyagala 1963: A new species of beaked whale in the tropical Indo-Pacific. Marine Mammal Science, 30, 1081-1108. |
[12] | Davidson AD, Boyer AG, Kim H, Pompa-Mansilla S, Hamilton MJ, Costa DP, Ceballos G, Brown JH (2012) Drivers and hotspots of extinction risk in marine mammals. Proceedings of the National Academy of Sciences, USA, 109, 3395-3400. |
[13] | Davis RW (2019) Marine Mammals:Adaptations for an Aquatic Life. Springer Nature, Cham, Switzerland. |
[14] |
Derville S, Torres LG, Albertson R, Andrews O, Baker CS, Carzon P, Constantine R, Donoghue M, Dutheil C, Gannier A, Oremus M, Poole MM, Robbins J, Garrigue C (2019) Whales in warming water: Assessing breeding habitat diversity and adaptability in Oceania’s changing climate. Global Change Biology, 25, 1466-1481.
DOI |
[15] |
Ding CC, Liang DN, Xin WP, Li CW, Ameca EI, Jiang ZG (2022) A dataset on the morphological, life-history and ecological traits of the mammals in China. Biodiversity Science, 30, 21520. (in Chinese with English abstract)
DOI |
[ 丁晨晨, 梁冬妮, 信文培, 李春旺, Eric I. Ameca, 蒋志刚 (2022) 中国哺乳动物形态、生活史和生态学特征数据集. 生物多样性, 30, 21520.]
DOI |
|
[16] | Etard A, Morrill S, Newbold T (2020) Global gaps in trait data for terrestrial vertebrates. Global Ecology and Biogeography, 29, 2143-2158. |
[17] | Franklin J (2009) Mapping Species Distributions:Spatial Inference and Prediction. Cambridge University Press, Cambridge. |
[18] |
Geisler JH, McGowen MR, Yang G, Gatesy J (2011) A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology, 11, 112.
DOI PMID |
[19] |
Ho LST, Ané C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63, 397-408.
DOI PMID |
[20] | IUCN (2024) The IUCN Red List of Threatened Species. Version 2024-1. https://www.iucnredlist.org. (accessed on 2024-07-06) |
[21] | Iverson LR, Prasad AM, Matthews SN, Peters MP (2011) Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems, 14, 1005-1020. |
[22] | Jefferson TA, Webber MA, Pitman RL (2015) Marine Mammals of the World: A Comprehensive Guide to Their Identification, 2nd edn. Academic Press, London. |
[23] | Liu MM, Lin ML, Dong LJ, Caruso F, Li SH (2022) An integrated strategy for monitoring cetaceans in data-poor regions. Biological Conservation, 272, 109648. |
[24] |
McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Struebig M, Deaville R, Jepson PD, Jarman S, Polanowski A, Morin PA, Rossiter SJ (2020) Phylogenomic resolution of the cetacean tree of life using target sequence capture. Systematic Biology, 69, 479-501.
DOI PMID |
[25] | Newbold T, Scharlemann JPW, Butchart SHM, Şekercioğlu ÇH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proceedings of the Royal Society B: Biological Sciences, 280, 20122131. |
[26] | R Core Team (2024) The R Project for Statistical Computing. https://www.R-project.org/. (accessed on 2024-04-29) |
[27] | Society for Marine Mammalogy’s Committee on Taxonomy (2024) List of Marine Mammal Species and Subspecies. https://www.marinemammalscience.org. (accessed on 2024-06-26) |
[28] | Soria CD, Pacifici M, Di Marco M, Stephen SM, Rondinini C (2021) COMBINE: A coalesced mammal database of intrinsic and extrinsic traits. Ecology, 102, e03344. |
[29] | Thewissen JGM, Cooper LN, George JC, Bajpai S (2009) From land to water: The origin of whales, dolphins, and porpoises. Evolution: Education and Outreach, 2, 272-288. |
[30] | Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95, 2027. |
[31] | Wilson DE, Mittermeier RA (2014) Handbook of the Mammals of the World (Vol. 4):Sea Mammals. Lynx Edicions, Barcelona, Spain. |
[32] | Würsig B, Jefferson TA (1990) Methods of photo-identification for small cetaceans. Reports of the International Whaling Commission, 12, 43-52. |
[33] |
Yamada TK, Kitamura S, Abe S, Tajima Y, Matsuda A, Mead JG, Matsuishi TF (2019) Description of a new species of beaked whale (Berardius) found in the North Pacific. Scientific Reports, 9, 12723.
DOI PMID |
[34] |
Yang G, Xu SX, Chen BY, Shan L (2018) Advances in marine mammal research in China. Acta Theriologica Sinica, 38, 572-585. (in Chinese with English abstract)
DOI |
[ 杨光, 徐士霞, 陈炳耀, 单磊 (2018) 中国海兽研究进展. 兽类学报, 38, 572-585.] | |
[35] |
Zhou XM, Guang XM, Sun D, Xu SX, Li MZ, Seim I, Jie WC, Yang LF, Zhu QH, Xu JB, Gao Q, Kaya A, Dou QH, Chen BY, Ren WH, Li SC, Zhou KY, Gladyshev VN, Nielsen R, Fang XD, Yang G (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature Communications, 9, 1276.
DOI PMID |
[1] | 赵一凡, 王彦平. 全球蛇类生活史、生态学和生物地理特征数据集[J]. 生物多样性, 2025, 33(2): 24476-. |
[2] | 陈丁松, 刘子恺, 贺子洋, 陈伟东. 缓步动物多样性、分布特征和生态功能研究进展[J]. 生物多样性, 2025, 33(2): 24406-. |
[3] | 王江, 赵一凡, 屈彦福, 张财文, 张亮, 陈传武, 王彦平. 中国蛇类形态、生活史和生态学特征数据集[J]. 生物多样性, 2023, 31(7): 23126-. |
[4] | 钟雨茜, 陈传武, 王彦平. 中国蜥蜴类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(4): 22071-. |
[5] | 宋云枫, 陈传武, 王彦平. 中国两栖类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(3): 22053-. |
[6] | 丁晨晨, 梁冬妮, 信文培, 李春旺, 蒋志刚. 中国哺乳动物形态、生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(2): 21520-. |
[7] | 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平. 中国鸟类的生活史和生态学特征数据集[J]. 生物多样性, 2021, 29(9): 1149-1153. |
[8] | 武英达, 茆卫琳, 员瑗. 我国寒温带至亚热带森林多孔菌区系和多样性比较[J]. 生物多样性, 2021, 29(10): 1369-1376. |
[9] | 魏鑫磊, 李姝, 窦文俊, 亓宝, 王琦, 李玉. 甘肃省祁连山国家级自然保护区的黏菌物种多样性[J]. 生物多样性, 2021, 29(1): 65-71. |
[10] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[11] | 任鹏, 余建平, 陈小南, 申小莉, 宋虓, 张田田, 余永泉, 丁平. 古田山国家级自然保护区白颈长尾雉的分布格局及其季节变化[J]. 生物多样性, 2019, 27(1): 13-23. |
[12] | 柯盛, 申玉春, 谢恩义, 李再亮. 雷州半岛流沙湾潮间带底栖贝类多样性[J]. 生物多样性, 2013, 21(5): 547-553. |
[13] | 丁兰平, 黄冰心, 谢艳齐. 中国大型海藻的研究现状及其存在的问题[J]. 生物多样性, 2011, 19(6): 798-804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn