生物多样性 ›› 2025, Vol. 33 ›› Issue (2): 24406. DOI: 10.17520/biods.2024406 cstr: 32101.14.biods.2024406
陈丁松1,2(), 刘子恺1,2(
), 贺子洋1,3(
), 陈伟东1,2,*(
)(
)
收稿日期:
2024-09-08
接受日期:
2024-11-06
出版日期:
2025-02-20
发布日期:
2025-02-26
通讯作者:
*E-mail: wd_chen@fjnu.edu.cn
基金资助:
Chen Dingsong1,2(), Liu Zikai1,2(
), He Ziyang1,3(
), Chen Weidong1,2,*(
)(
)
Received:
2024-09-08
Accepted:
2024-11-06
Online:
2025-02-20
Published:
2025-02-26
Contact:
*E-mail: wd_chen@fjnu.edu.cn
Supported by:
摘要:
缓步动物又被称为水熊虫, 栖息在海洋、淡水和陆地生态系统的各种环境中, 是微型动物群落的重要组成部分, 以对极端环境极强的适应能力而闻名。缓步动物在微食物网中占据了不同的营养级, 预示着它们具有重要的生态功能。近年来, 缓步动物的多样性、鉴定方法和生理、生态特征等研究已经取得了一定进展, 但缺乏系统总结。本文梳理了近30年国内外缓步动物研究成果, 借助文献计量分析, 系统总结了缓步动物在新种发现、鉴定方法、分布特征和生态功能等方面的研究进展。主要包括: (1)至2024年, 全球已记录的缓步动物共1,488种, 它们在水生和陆地环境中广泛存在, 包括苔藓、土壤、海洋、极地、城市等潮湿环境, 并不断有新种被发现。(2)缓步动物鉴定方法以个体形态鉴定为主, 缺乏标准的分子生物学研究手段, 极大限制了其分类学研究的发展。(3)总结了淡水和海洋生态系统中缓步动物的分布特征, 阐述了缓步动物应对全球变化(如气候变暖、大气氮沉降等)表现出的独特响应机制。(4)初步梳理了缓步动物在食物网中的生态功能, 包括与其他微型动物及微生物的互作关系。最后, 建议未来关注三个研究方向: (1)发展适用于缓步动物的分子生物学研究方法; (2)探索不同生态系统类型、大空间、长时间尺度上缓步动物分布特征及其驱动因素; (3)阐明它们在微食物网中的位置及其生态功能。
陈丁松, 刘子恺, 贺子洋, 陈伟东 (2025) 缓步动物多样性、分布特征和生态功能研究进展. 生物多样性, 33, 24406. DOI: 10.17520/biods.2024406.
Chen Dingsong, Liu Zikai, He Ziyang, Chen Weidong (2025) Advances in tardigrade diversity, distribution characteristics and ecological functions. Biodiversity Science, 33, 24406. DOI: 10.17520/biods.2024406.
[1] | Arakawa K (2020) Simultaneous metabarcoding of eukaryotes and prokaryotes to elucidate the community structures within tardigrade microhabitats. Diversity, 12, 110. |
[2] | Bai LF, Wang XG, Gao XH, Li YJ, Fontoura P (2022) First record of a deep-sea tardigrade from the South China Sea, Halechiniscus janus sp. nov. (Arthrotardigrada: Halechiniscidae). Zootaxa, 5159, 425-439. |
[3] | Bhakare KCR, Pai K (2021) An overview of freshwater Tardigrada in northern Western Ghats of India. Aquatic Ecology, 55, 1327-1338. |
[4] | Bingemer J, Pfeiffer M, Hohberg K (2020) First 12 years of tardigrade succession in the young soils of a quickly evolving ecosystem. Zoological Journal of the Linnean Society, 188, 887-899. |
[5] |
Bonkowski M (2004) Protozoa and plant growth: The microbial loop in soil revisited. New Phytologist, 162, 617-631.
DOI PMID |
[6] |
Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Molecular Phylogenetics and Evolution, 80, 79-87.
DOI PMID |
[7] | Bryndová M, Stec D, Schill RO, Michalczyk Ł, Devetter M (2020) Dietary preferences and diet effects on life-history traits of tardigrades. Zoological Journal of the Linnean Society, 188, 865-877. |
[8] | Caceres CE (1997) Dormancy in invertebrates. Invertebrate Biology, 116, 371-383. |
[9] |
Chellapandian H, Jeyachandran S (2024) Leveraging tardigrade proteins Dsup and CAHS D for enhanced neural protection in neurosurgery and neuroscience. Neurosurgical Review, 47, 686.
DOI PMID |
[10] | Choi YN, Kim HS, Jo SG (2022) Seasonal fluctuations in the abundance of marine tardigrades (Heterotardigrada: Echiniscoides sigismundi, Styraconyx haploceros) inhabiting Fistulobalanus albicostatus, an intertidal barnacle on the west coast of Korea. Ocean Science Journal, 57, 334-344. |
[11] | Degma P (2018) Field and laboratory methods. In: Water Bears: The Biology of Tardigrades (ed. Schill RO), pp. 349-369. Springer International Publishing, Cham. |
[12] | Degma P, Guidetti R (2024) Actual Checklist of Tardigrada Species. https://dx.doi.org/10.25431/11380_1178608. (accessed on 2024-07-30) |
[13] | Franco ALC, Adams BJ, Diaz MA, Lemoine NP, Dragone NB, Fierer N, Lyons WB, Hogg I, Wall DH (2022) Response of Antarctic soil fauna to climate-driven changes since the Last Glacial Maximum. Global Change Biology, 28, 644-653. |
[14] | Garey JR, Nelson DR, Mackey LY, Li J (1999) Tardigrade phylogeny: Congruency of morphological and molecular evidence. Zoologischer Anzeiger, 238, 205-210. |
[15] | Gąsiorek P, Degma P, Michalczyk Ł (2024) Hiding in the Arctic and in mountains: A (dis)entangled classification of Claxtonia (Heterotardigrada: Echiniscidae). Zoological Journal of the Linnean Society, 200, 60-86. |
[16] | Gąsiorek P, Michalczyk Ł (2024) Novel integrative data for Indomalayan echiniscids (Heterotardigrada): New species and old problems. Organisms Diversity and Evolution. https://doi.org/10.1007/s13127-023-00628-5. (accessed on 2025-03-28) |
[17] | Gąsiorek P, Vončina K (2023) Atlas of the Echiniscidae (Heterotardigrada) of the World. Part I. West Palaearctic Echiniscus species. Zootaxa, 5344, 1-72. |
[18] | Giovannini I, Altiero T, Guidetti R, Rebecchi L (2018) Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change? Journal of Experimental Biology, 221, jeb160622. |
[19] | Giovannini I, Manfrin C, Greco S, Vincenzi J, Altiero T, Guidetti R, Giulianini P, Rebecchi L (2023) Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species. Frontiers in Physiology, 14, 1258932. |
[20] | Guidetti R, Altiero T, Marchioro T, Sarzi Amadè L, Avdonina AM, Bertolani R, Rebecchi L (2012) Form and function of the feeding apparatus in Eutardigrada (Tardigrada). Zoomorphology, 131, 127-148. |
[21] |
Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. Journal of Insect Physiology, 57, 567-576.
DOI PMID |
[22] | Guidetti R, Schill RO, Bertolani R, Dandekar T, Wolf M (2009) New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. Journal of Zoological Systematics and Evolutionary Research, 47, 315-321. |
[23] | Guil N, Giribet G (2012) A comprehensive molecular phylogeny of tardigrades—Adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics, 28, 21-49. |
[24] | He ZY, Hu HW, Thi Nguyen BA, Chen QL, Weatherley A, Nash M, Bi L, Wu KR, He JZ (2024a) Distribution of soil tardigrades as revealed by molecular identification across a large-scale area of Australia. Soil Biology and Biochemistry, 196, 109506. |
[25] | He ZY, Hu HW, Wu KR, Bi L, Na S, Weatherley A, Nash M, He JZ (2024b) An optimised molecular-based method for ecological study of tardigrades in soils. Soil Biology and Biochemistry, 199, 109597. |
[26] | Horton DJ, Kershner MW, Blackwood CB (2017) Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. European Journal of Soil Biology, 80, 43-48. |
[27] |
Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology, 7, 757-766.
PMID |
[28] |
Jørgensen A, Faurby S, Hansen JG, Møbjerg N, Kristensen RM (2010) Molecular phylogeny of Arthrotardigrada (Tardigrada). Molecular Phylogenetics and Evolution, 54, 1006-1015.
DOI PMID |
[29] | Jørgensen A, Møbjerg N, Kristensen RM (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. Journal of Limnology, 66, 77-83. |
[30] |
Kaczmarek Ł, Michalczyk Ł, McInnes SJ (2014) Annotated zoogeography of non-marine Tardigrada. Part I. Central America. Zootaxa, 3763, 1-62.
DOI PMID |
[31] |
Kaczmarek Ł, Michalczyk Ł, McInnes SJ (2015) Annotated zoogeography of non-marine Tardigrada. Part II. South America. Zootaxa, 3923, 1-107.
DOI PMID |
[32] | Kaczmarek Ł, Michalczyk Ł, McInnes SJ (2016) Annotated zoogeography of non-marine Tardigrada. Part III. North America and Greenland. Zootaxa, 4203, 1-249. |
[33] | Kayastha P, Stec D, Sługocki Ł, Gawlak M, Mioduchowska M, Kaczmarek Ł (2023) Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae). Scientific Reports, 13, 2196. |
[34] | Keilin D (1959) The Leeuwenhoek Lecture—The problem of anabiosis or latent life:History and current concept. Proceedings of the Royal Society B: Biological Sciences, 150, 149-191. |
[35] |
Köninger J, Ballabio C, Panagos P, Jones A, Schmid MW, Orgiazzi A, Briones MJI (2023) Ecosystem type drives soil eukaryotic diversity and composition in Europe. Global Change Biology, 29, 5706-5719.
DOI PMID |
[36] |
Koštál V (2006) Eco-physiological phases of insect diapause. Journal of Insect Physiology, 52, 113-127.
DOI PMID |
[37] | Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 39, 2977-2991. |
[38] | Li HQ, Liu XL (2010) A checklist of Tardigrada from Mount Huanglong of Yan’an City. Hubei Agricultural Sciences, 49, 659-662. (in Chinese with English abstract) |
[ 李宏群, 刘晓莉 (2010) 陕西省延安黄龙山缓步动物区系初步调查. 湖北农业科学, 49, 659-662.] | |
[39] | Li XC (2008) Chinese-western language comparison of the structure and taxonomic terminologies of Tardigrada. Journal of Shaanxi Normal University (Natural Science Edition), 36(S2), 34-38. (in Chinese with English abstract) |
[ 李晓晨 (2008) 缓步动物形态构造和分类术语中-西文对照. 陕西师范大学学报(自然科学版), 36(S2), 34-38.] | |
[40] | Liu Y, Wang LZ (2011) Research progress on the taxonomy of Tardigrada in China. Journal of Anhui Agricultural Sciences, 39, 21061-21062, 21095. (in Chinese with English abstract) |
[ 刘莹, 王立志 (2011) 国内缓步动物系统分类研究进展. 安徽农业科学, 39, 21061-21062, 21095.] | |
[41] | Majdi N, de Necker L, Fourie H, Loggenberg A, Netherlands EC, Bunte-Tschikin J, Traunspurger W, du Preez GC (2022) Diversity and distribution of benthic invertebrates dwelling rivers of the Kruger National Park, South Africa. Koedoe-African Protected Area Conservation and Science, 64, 1702. |
[42] | Majdi N, Michiels IC, Traunspurger W (2016) Resource depletion affects the structure of an experimental benthic food web. Limnologica, 59, 99-108. |
[43] | Massa E, Rebecchi L, Guidetti R (2023) Effects of synthetic acid rain and organic and inorganic acids on survival and CaCO3 piercing stylets in tardigrades. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 339, 578-589. |
[44] | McQueen JP, Gattoni K, Gendron ES, Schmidt SK, Sommers P, Porazinska DL (2023) External and internal microbiomes of Antarctic nematodes are distinct, but more similar to each other than the surrounding environment. Journal of Nematology, 55, 20230004. |
[45] | McSorley R, Wang KH (2009) Possibilities for biological control of root-knot nematodes by natural predators in Florida soils. Proceedings of the Florida State Horticulture Society, 122, 421-425. |
[46] | Michalczyk Ł, Kaczmarek Ł, McInnes SJ (2022) Annotated zoogeography of non-marine Tardigrada. Part V. Australasia. Zootaxa, 5107, 1-119. |
[47] | Michalczyk Ł, Wełnicz W, Frohme M, Kaczmarek Ł (2012) Redescriptions of three Milnesium Doyère, 1840 taxa (Tardigrada: Eutardigrada: Milnesiidae), including the nominal species for the genus. Zootaxa, 3154, 1-20. |
[48] | Nelson DR, Guidetti R, Rebecchi L (2010) Tardigrada. In: Ecology and Classification of North American Freshwater Invertebrates, 3rd edn. (eds Thorp JH, Covich AP), pp. 455-484. Academic Press, Boston. |
[49] | Nelson DR, Guidetti R, Rebecchi L (2015) Phylum Tardigrada. In: Ecology and General Biology, 4th edn. (eds Thorp JH, Rogers DC), pp. 347-380. Academic Press, Boston. |
[50] | Nelson DR, Guidetti R, Rebecchi L, Kaczmarek Ł, McInnes S (2020) Phylum Tardigrada. In: Keys to Neotropical and Antarctic Fauna, 4th edn. (eds Rogers DC, Damborenea C, Thorp JH), pp. 505-522 Academic Press, Boston. |
[51] | Omari H, Pietrasiak N, Ferrenberg S, Nishiguchi MK (2022) A spatiotemporal framework reveals contrasting factors shape biocrust microbial and microfaunal communities in the Chihuahuan Desert. Geoderma, 405, 115409. |
[52] | Ostertag BR, Rocha AM, González-Reyes AX, Suárez CE, Grabosky A, Doma IL, Corronca J (2023) Effect of environmental and microhabitat variables on tardigrade communities in a medium-sized city in central Argentina. Urban Ecosystems, 26, 293-307. |
[53] |
Pérez-Pech WA, Anguas-Escalante A, Cutz-Pool LQ, Guidetti R (2017) Doryphoribius chetumalensis sp. nov. (Eutardigrada: Isohypsibiidae) a new tardigrade species discovered in an unusual habitat of urban areas of Mexico. Zootaxa, 4344, 345-356.
DOI PMID |
[54] | Ptatscheck C, Putzki H, Traunspurger W (2017) Impact of deposit-feeding chironomid larvae (Chironomus riparius) on meiofauna and protozoans. Freshwater Science, 36, 796-804. |
[55] | Pust FL, Frøslev TG, Kristensen RM, Møbjerg N (2024) Environmental DNA metabarcoding of Danish soil samples reveals new insight into the hidden diversity of eutardigrades in Denmark. Zoological Journal of the Linnean Society, 200, 20-33. |
[56] | Regier JC, Shultz JW, Kambic RE, Nelson DR (2004) Robust support for tardigrade clades and their ages from three protein-coding nuclear genes. Invertebrate Biology, 123, 93-100. |
[57] | Schill RO, Jönsson KI, Pfannkuchen M, Brümmer F (2011) Food of tardigrades: A case study to understand food choice, intake and digestion. Journal of Zoological Systematics and Evolutionary Research, 49, 66-70. |
[58] | Schmidt A, Schneider C, Decker P, Hohberg K, Römbke J, Lehmitz R, Bálint M (2022) Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties. Ecology and Evolution, 12, e8991. |
[59] | Shaw EA, Adams BJ, Barrett JE, Lyons WB, Virginia RA, Wall DH (2018) Stable C and N isotope ratios reveal soil food web structure and identify the nematode Eudorylaimus antarcticus as an omnivore-predator in Taylor Valley, Antarctica. Polar Biology, 41, 1013-1018. |
[60] |
Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 1794-1805.
DOI PMID |
[61] | Sommerville RI, Davey KG (2002) Diapause in parasitic nematodes: A review. Canadian Journal of Zoology, 80, 1817-1840. |
[62] | Stec D, Cancellario T, Fontaneto D (2022) Diversification rates in Tardigrada indicate a decreasing tempo of lineage splitting regardless of reproductive mode. Organisms Diversity and Evolution, 22, 965-974. |
[63] | Sun XZ (2014) Relationships Between Tardigrade Species Diversity and the Environment in China. PhD dissertation, Shaanxi Normal University, Xi’an. (in Chinese with English abstract) |
[ 孙西寨 (2014) 中国缓步动物物种多样性与环境的关系. 博士学位论文, 陕西师范大学, 西安.] | |
[64] | Surmacz B, Stec D, Prus-Frankowska M, Buczek M, Michalczyk Ł, Łukasik P (2024) Pinpointing the microbiota of tardigrades: What is really there? Environmental Microbiology, 26, e16659. |
[65] |
Suzuki AC, Kagoshima H, Chilton G, Grothman GT, Johansson C, Tsujimoto M (2017) Meiofaunal richness in highly acidic hot springs in Unzen-Amakusa National Park, Japan, including the first rediscovery attempt for Mesotardigrada. Zoological Science, 34, 11-17.
DOI PMID |
[66] | Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T (2022) Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biology, 20, e3001780. |
[67] |
Topstad L, Guidetti R, Majaneva M, Ekrem T (2021) Multi-marker DNA metabarcoding reflects tardigrade diversity in different habitats. Genome, 64, 217-231.
DOI PMID |
[68] | Troell S, Jönsson KI (2023) Occurrence of tardigrades and morphometric and chemical conditions in rock pools by the Baltic Sea. Scientific Reports, 13, 19776. |
[69] | Tůmová M, Stec D, Michalczyk Ł, Devetter M (2022) Buccal tube dimensions and prey preferences in predatory tardigrades. Applied Soil Ecology, 170, 104303. |
[70] |
Vecchi M, Adakpo LK, Dunn RR, Nichols LM, Penick CA, Sanders NJ, Rebecchi L, Guidetti R (2021) The toughest animals of the Earth versus global warming: Effects of long-term experimental warming on tardigrade community structure of a temperate deciduous forest. Ecology and Evolution, 11, 9856-9863.
DOI PMID |
[71] | Vecchi M, Ferrari C, Stec D, Calhim S (2022) Desiccation risk favours prevalence and diversity of tardigrade communities and influences their trophic structure in alpine ephemeral rock pools. Hydrobiologia, 849, 1995-2007. |
[72] | Vecchi M, McDaniel JL, Chartrain J, Vuori T, Walsh EJ, Calhim S (2023) Morphology, phylogenetic position, and mating behaviour of a new Mesobiotus (Tardigrada) species from a rock pool in the Socorro Box Canyon (New Mexico, USA). The European Zoological Journal, 90, 708-725. |
[73] |
Vecchi M, Newton ILG, Cesari M, Rebecchi L, Guidetti R (2018) The microbial community of tardigrades: Environmental influence and species specificity of microbiome structure and composition. Microbial Ecology, 76, 467-481.
DOI PMID |
[74] | Vincenzi J, Cesari M, Kaczmarek Ł, Roszkowska M, Mioduchowska M, Rebecchi L, Kiosya Y, Guidetti R (2024) The xerophilic genera Xerobiotus and Pseudohexapodibius (Macrobiotidae; Tardigrada): Biodiversity, biogeography and phylogeny. Zoological Journal of the Linnean Society, 200, 111-141. |
[75] |
Vishnudattan NK, Rubal M, Nandan SB (2023) A new species of Batillipes (Arthrotardigrada: Batillipedidae) from the mid littoral zone of the southeast coast of India. Zootaxa, 5346, 163-172.
DOI PMID |
[76] | Wang LZ, Li XC (2006) Effect of temperature on food assimilation of tardigrade Milnesium tardigradum Doyère (Tardigrada, Milnesiidae). Sichuan Journal of Zoology, 25, 103-105. (in Chinese with English abstract) |
[ 王立志, 李晓晨 (2006) 温度对小斑熊虫Milnesium tardigradum Doyère (缓步动物门, 小斑熊虫科)食量和食物消化率的影响. 四川动物, 25, 103-105.] | |
[77] | Wang XG, Bai LF, Wang CS, Lu B, Li YJ, Lin QY, Huang XY, Fontoura P (2023) Preliminary studies of the Tardigrada communities from a polymetallic nodule area of the deep South China Sea. Frontiers in Marine Science, 10, 1110841. |
[78] | Wilden B, Majdi N, Traunspurger W (2024) Global resemblance, local divergence?—A comparison of meiobenthic invertebrate communities dwelling in ancient lakes Malawi, Ohrid and Baikal. Journal of Great Lakes Research, 50, 102305. |
[79] | Yang T (1996) Tardigrades. Bulletin of Biology, (9), 15-16. (in Chinese) |
[ 杨潼 (1996) 熊虫. 生物学通报, (9), 15-16.] | |
[80] | Yang T (2015) Fauna Sinica:Tardigrada. Science Press, Beijing. (in Chinese) |
[ 杨潼 (2015) 中国动物志: 缓步动物门. 科学出版社, 北京.] | |
[81] | Yuan ZM, Liu QJ, Wang Y, Liu LJ, Chen Y, Li XC (2023) Milnesium guanyinensis sp. nov. (Eutardigrada: Apochela) from Yunnan, China. Zootaxa, 5249, 378-392. |
[82] |
Zarubin M, Murugova T, Ryzhykau Y, Ivankov O, Uversky VN, Kravchenko E (2024) Structural study of the intrinsically disordered tardigrade damage suppressor protein (Dsup) and its complex with DNA. Scientific Reports, 14, 22910.
DOI PMID |
[83] | Zawierucha K, Trzebny A, Buda J, Bagshaw E, Franzetti A, Dabert M, Ambrosini R (2022) Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms. PLoS ONE, 17, e0262039. |
[84] | Zawierucha K, Vecchi M, Takeuchi N, Ono M, Calhim S (2023) Negative impact of freeze-thaw cycles on the survival of tardigrades. Ecological Indicators, 154, 110460. |
[85] | Zheng K, Shen P, Hou YS, Wang F, Wang HQ, Yang D (2024) Integrated multi-omics profiling uncovers potential molecular anhydrobiology of tardigrades. Scientia Sinica (Vitae), 54, 936-950. (in Chinese with English abstract) |
[ 郑坤, 沈磐, 侯雨杉, 王斐, 王虎强, 杨冬 (2024) 水熊虫耐干燥机制的关键分子筛选. 中国科学: 生命科学, 54, 936-950.] |
[1] | 张颂琪, 陆义, 陈炳耀, 杨光, 王彦平, 陈传武. 全球鲸豚类形态、生活史和生态学特征数据集[J]. 生物多样性, 2025, 33(2): 24442-. |
[2] | 赵榕江, 吴纪华, 何维明, 赵彩云, 周波, 李博, 杨强. 土壤生物多样性与外来植物入侵: 进展与展望[J]. 生物多样性, 2024, 32(11): 24243-. |
[3] | 牛永杰, 马全会, 朱玉, 刘海荣, 吕佳乐, 邹元春, 姜明. 氮沉降对草地昆虫多样性影响的研究进展[J]. 生物多样性, 2023, 31(9): 23130-. |
[4] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[5] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[6] | 姚保民, 曾青, 张丽梅. 土壤原生生物多样性及其生态功能研究进展[J]. 生物多样性, 2022, 30(12): 22353-. |
[7] | 孙军, 宋煜尧, 施义锋, 翟键, 燕文卓. 近十年中国海洋生物多样性研究进展[J]. 生物多样性, 2022, 30(10): 22526-. |
[8] | 方睿霞, 王修齐, 白春, 岩温罕, 杨青松, 李文义, 高路. 《生物多样性公约》研究知识图谱: 基于CiteSpace的文献计量分析[J]. 生物多样性, 2021, 29(12): 1718-1726. |
[9] | 武英达, 茆卫琳, 员瑗. 我国寒温带至亚热带森林多孔菌区系和多样性比较[J]. 生物多样性, 2021, 29(10): 1369-1376. |
[10] | 魏鑫磊, 李姝, 窦文俊, 亓宝, 王琦, 李玉. 甘肃省祁连山国家级自然保护区的黏菌物种多样性[J]. 生物多样性, 2021, 29(1): 65-71. |
[11] | 李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应[J]. 生物多样性, 2021, 29(1): 53-64. |
[12] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[13] | 宋博,陈琳琳,闫朗,姜少玉,刘春云,李秉钧,李宝泉. 山东东营和烟台潮间带海草床食物网结构特征[J]. 生物多样性, 2019, 27(9): 984-992. |
[14] | 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. |
[15] | 徐光华,李小玉,施春华. 复杂性-稳定性研究: 数学模型的进展[J]. 生物多样性, 2019, 27(12): 1364-1378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn