生物多样性 ›› 2015, Vol. 23 ›› Issue (2): 157-166.doi: 10.17520/biods.2014007

• • 上一篇    下一篇

亚热带常绿阔叶林种子性状对木本植物聚集格局的影响

姚蓓1, 余建平2, 刘晓娟1, 米湘成1, *(), 马克平1   

  1. 1 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2 古田山国家级自然保护区管理局, 浙江开化 324300
  • 收稿日期:2014-01-08 接受日期:2014-05-09 出版日期:2015-03-20
  • 通讯作者: 米湘成 E-mail:mixiangcheng@ibcas.ac.cn
  • 基金项目:
    国家自然科学基金(31170401)

Effect of seed traits on spatial aggregation of trees in a subtropical evergreen broad-leaved forest

Bei Yao1, Jianping Yu2, Xiaojuan Liu1, Xiangcheng Mi1, *(), Keping Ma1   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2 Gutianshan National Nature Reserve Administrative Bureau, Kaihua, Zhejiang 324300
  • Received:2014-01-08 Accepted:2014-05-09 Online:2015-03-20
  • Contact: Mi Xiangcheng E-mail:mixiangcheng@ibcas.ac.cn

种子的特征如种子的重量、大小和传播方式直接影响物种的扩散能力, 从而影响物种空间分布的聚集强度。作者以古田山亚热带常绿阔叶林24 ha样地中89种木本植物为研究对象, 分析了它们的种子大小、重量和扩散方式与物种聚集强度的关系。结果表明: 在20 m范围内, 样地内90%的物种为聚集分布, 聚集强度随着尺度的增大而减弱, 稀有种的聚集强度大于常见种。用系统发育独立比较(phylogenetically independent contrasts)方法排除了系统发育影响后, 物种的多度与聚集强度呈显著相关(在15 m尺度, R2 = 0.32, P < 0.001); 种子大小与物种聚集强度的相关性较弱(R2 = 0.05, P < 0.05), 而种子重量与物种聚集强度之间的相关性相对较强(R2 = 0.14, P < 0.05)。种子的传播方式显著地影响物种的聚集强度: 无助力扩散物种的聚集强度显著地高于有助力扩散物种的聚集强度(F1, 87= 4.439, P = 0.038), 即长距离扩散导致物种的聚集强度减弱。可见, 在亚热带森林中, 种子性状通过影响种子扩散进而引起物种聚集强度的变化, 是影响物种空间分布格局的重要生态因素。

关键词: 种子大小, 种子重量, 扩散方式, 空间分布格局, 系统发育独立比较, 聚集强度, 扩散限制

The spatial distribution of species provides basic information for the study of species coexistence. Seed traits such as size, weight and dispersal syndromes influence the spatial distribution of species through various species-specific seed dispersal. In this study, we collected data on seed size, seed mass and seed dispersal syndromes of 89 woody trees in the Gutianshan subtropical evergreen broad-leaved forest. The relationship between seed size, seed mass, seed dispersal syndromes, and conspecific aggregation intensity were examined. Results showed that most of the species (~90%) were significantly aggregated across scales up to 20 m. The strength of spatial aggregation decreased with increasing spatial scales. Rare species were more aggregated than common species. Species abundance was significantly correlated with aggregation intensity (at spatial scale of 15 m, R2 = 0.32, P < 0.001) after removing the phylogenetic relationship among species using PIC (phylogenetically independent contrasts). Seed size was weakly associated with aggregation intensity (R2 = 0.05, P < 0.05), but seed mass was strongly correlated (R2 = 0.14, P < 0.05). Seed dispersal syndromes significantly influenced species aggregation intensity: ballistically dispersed species were more significantly aggregated than assisted-dispersed species (F1, 87 = 4.439, P = 0.038). Long-distances dispersal may lead to a reduction in aggregation intensity. In conclusion, species-specific seed traits and dispersal ability were ecologically significant factors impacting the spatial pattern of species distribution.

Key words: seed size, seed mass, dispersal syndromes, spatial distribution, phylogenetically independent contrasts, aggregation intensity, dispersal limitation

表1

不同扩散方式中种子或果实的性状"

扩散方式
Dispersal syndrome
果实类型
Fruit type
传播者
Disperser
物种数
No. of species
比例
%
喷射扩散 Ballistic dispersal 开裂蒴果 Explosive capsule 无 No 4 4.49
风力扩散 Wind dispersal 蒴果、荚果、翅果 Capsule, pod, and winged nut 风力 Wind 15 16.85
动物扩散 Animal dispersal
A1 (< 6 mm) 浆果、核果、蒴果 Berry, drupe, and capsule 动物 Animal 36 40.45
A2 (6-12 mm) 浆果、核果、蒴果 Berry, drupe, and capsule 动物 Animal 23 25.84
A3 (>12 mm) 浆果、核果、蒴果 Berry, drupe, and capsule 动物 Animal 11 12.40

表2

古田山24 ha森林动态监测样地不同尺度上分布格局呈显著聚集分布的树种的百分比"

尺度
r (m)
聚集分布
Aggregated
distribution
随机分布
Random
distribution
规则分布
Regular
distribution
(0, 5] 94% 6% 0
(5, 10] 95% 5% 0
(10, 15] 94% 6% 0
(15, 20] 92% 8% 0

图1

古田山24 ha森林动态监测样地中具有不同种子传播方式的4个树种的空间分布"

图2

杨梅在不同尺度的聚集强度g(r)"

表3

古田山24 ha森林动态监测样地中种子性状和其他参数的系统发育信号分析"

参数 Parameters K P
Log (seed size) 0.549 0.001
Log (seed mass) 0.657 0.001
Log (species abundance) 0.216 0.001
g(r = 5) 0.372 0.070
g(r = 10) 0.423 0.028
g(r = 15) 0.454 0.017
g(r = 20) 0.363 0.007
g(r = 25) 0.224 0.051
g(r = 30) 0.144 0.227

图3

物种多度和聚集强度在5 m或15 m范围内的关系。上面两图表示5 m尺度范围; 下面两图表示15 m尺度范围。左侧两图未考虑系统发育信号; 右侧两图用PIC方法排除了系统发育信号。"

图4

种子大小(a)和种子重量(b)在5 m范围内分别与聚集强度的关系"

图5

不同扩散方式的树种在5 m范围内平均聚集强度的变化(平均值± SD)。(a)图所示5种扩散方式的物种间聚集强度无显著差异(F4, 84 = 1.497, P = 0.21); (b)图显示聚集强度在无助力扩散物种和有助力扩散物种这两组扩散方式间差异显著(F1, 87 = 4.439, P = 0.038)。A1: 动物扩散< 6 mm; A2: 动物扩散6-12 mm之间; A3: 动物扩散> 12 mm; B: 喷射扩散(无助力扩散); W: 风力扩散; A: 有助力扩散。"

1 Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns.Journal of Statistical Software, 12(6), 1-42.
2 Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile.Evolution, 57, 717-745.
3 Cale WG, Henebry GM, Yeakley JA (1989) Inferring process from pattern in natural communities.BioScience, 39, 600-606.
4 Clark JS, LaDeau S, Ibanez I (2004) Fecundity of trees and the colonization-competition hypothesis.Ecological Monographs, 74, 415-442.
5 Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests.Ecological Monographs, 68, 213-235.
6 Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests.Ecology, 80, 1475-1494.
7 Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species.Science, 288, 1414-1418.
8 Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds den Boer PJ, Gradwell GR), pp. 298-312. Centre for Agricultural Publication and Documentation, Wageningen.
9 Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species.Journal of Ecology, 90, 714-727.
10 Du YJ, Mi XC, Ma KP (2012) Comparison of seed rain and seed limitation between community understory and gaps in a subtropical evergreen forest.Acta Oecologica, 44, 11-19.
11 Felsenstein J (1985) Phylogenies and the comparative method.The American Naturalist, 125, 1-15.
12 Getzin S, Wiegand T, Wiegand K, He FL (2008) Heterogeneity in?uences spatial patterns and demographics in forest stands.Journal of Ecology, 96, 807-820.
13 Greene DF, Johnson EA (1995) Long-distance wind dispersal of tree seeds.Canadian Journal of Botany, 73, 1036-1045.
14 Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
15 He FL, Legendre P (2002) Species diversity patterns derived from species-area models.Ecology, 83, 1185-1198.
16 Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest.Science, 203, 1299-1309.
17 Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
18 Hu ZH (胡正华), Yu MJ (于明坚) (2005) Niche characteristics of dominant populations in Cyclobalanopsis glauca forest in Gutian Mountain.Chinese Journal of Ecology(生态学杂志), 24, 1159-1162. (in Chinese with English abstract)
19 Janzen DH (1970) Herbivores and the number of tree species in tropical forests.The American Naturalist, 104, 501-528.
20 Jin DM (金冬梅), Li Y (李妍), Sun SC (孙书存) (2008) Principles and applications of phylogenetic comparative methods: an overview.Acta Ecologica Sinica(生态学报), 28, 1247-1256. (in Chinese with English abstract)
21 Jin DM (金冬梅) (2010) Leaf Traits of Woody Species in East China Forests and Their Relationships with Climate (中国东部森林木本植物的叶性状及其与气候的关系). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
22 Jordano P, Forget PM, Lambert JE, Böhning-Gaese K, Traveset A, Wright SJ (2011) Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction.Biology Letters, 7, 321-323.
23 Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26, 1463-1464.
24 Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory.Journal of Ecology, 97, 616-628.
25 Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distribution of tree species in a subtropical forest of China.Oikos, 118, 495-502.
26 Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, Du YJ, Zhang JL, Mi XC, Ren HB, Ma KP (2012) Covariation in plant functional traits and soil fertility within two species-rich forests.PLoS ONE, 7, e34767.
27 Medellin R, Gaona O (1999) Seed dispersal by bats and birds in forest and disturbed habitat of Chiapas, Mexico.Biotropica, 31, 478-485.
28 Montoya D, Purves DW, Urbieta IR, Zavala MA (2009) Do species distribution models explain spatial structure within tree species ranges?Global Ecology and Biogeography, 18, 662-673.
29 Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance-decay of similarity in ecological communities.Ecology Letters, 11, 904-917.
30 Muller-Landau HC, Wright SJ, Calderon O, Condit R, Hubbell SP (2008) Interspecific variation in primary seed dispersal in a tropical forest.Journal of Ecology, 96, 653-667.
31 Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment.Trends in Ecology and Evolution, 15, 278-285.
32 Nystrand O, Granström A (2000) Predation on Pinus sylvestris seeds and juvenile seedlings in Swedish boreal forest in relation to stand disturbance by logging.Journal of Applied Ecology, 37, 449-463.
33 Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language.Bioinformatics, 20, 289-290.
34 Plotkin JB, Muller-Landau HC (2002) Sampling the species composition of a landscape.Ecology, 83, 3344-3356.
35 Plotkin JB, Potts MD, Leslie N, Manokaran N, LaFrankie J, Ashton PS (2000) Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81-99.
36 Rand TA (2000) Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient.Journal of Ecology, 88, 608-621.
37 Réjou-Méchain M, Flores O, Bourland N, Doucet JL, Feteke RF, Pasquier A, Hardy OJ (2011) Spatial aggregation of tropical trees at multiple spatial scales.Journal of Ecology, 99, 1373-1381.
38 Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees.PLoS Biology, 4, 2132-2137.
39 Shen GC, Yu M, Hu XS, Mi X, Ren H, Sun IF, Ma K (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity.Ecology, 90, 3033-3041.
40 Wang X, Hao Z, Ye J, Zhang J, Li B, Yao X (2008) Spatial pattern of diversity in an old-growth temperate forest in Northeastern China.Acta Oecologica, 33, 345-354.
41 Wang XG, Wiegand T, Hao ZQ, Li BH, Ye J, Lin F (2010) Species associations in an old-growth temperate forest in north-eastern China.Journal of Ecology, 98, 674-686.
42 Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229.
43 Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering.Ecology, 88, 3088-3102.
44 Yu MJ (于明坚), Hu ZH (胡正华), Yu JP (余建平), Ding BY (丁炳扬), Fang T (方腾) (2001) Forest vegetation types in Gutianshan Nature Reserve in Zhejiang. Journal of Zhejiang University (Agriculture & Life Sciences) (浙江大学学报农业与生命科学版), 27, 375-380. (in Chinese with English abstract)
45 Zhang JL (张金龙) (2011) Plant Phylogenetic Diversity Patterns and Their Environmental Determinants: From Local to Regional Scales (植物系统发育多样性格局及其环境解释: 从群落到区域). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
46 Zhu Y (祝燕), Zhao GF (赵谷风), Zhang LW (张俪文), Shen GC (沈国春), Mi XC (米湘成), Ren HB (任海保), Yu MJ (于明坚), Chen JH (陈建华), Chen SW (陈声文), Fang T (方腾), Ma KP (马克平) (2008) Community composition and structure of Gutianshan forest dynamics plot in a mid subtropical evergreen broad-leaved forest, east China. Journal of Plant Ecology(植物生态学报), 32, 262-273. (in Chinese with English abstract)
[1] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[2] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27(4): 380-387.
[3] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[4] 刘金亮, 于明坚. (2019) 片段化森林群落构建的生态过程及其检验方法. 植物生态学报, 43(11): 929-945.
[5] 陈怡超, 赵莹, 宋希强, 任明迅. (2018) 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异. 植物生态学报, 42(8): 841-849.
[6] 胡一鸣, 梁健超, 金崑, 丁志锋, 周智鑫, 胡慧建, 蒋志刚. (2018) 喜马拉雅山哺乳动物物种多样性垂直分布格局. 生物多样性, 26(2): 191-201.
[7] 郭志文, 郑景明. (2017) 用植物生活史性状预测种子扩散方式. 生物多样性, 25(9): 966-971.
[8] 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼. (2017) 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局. 植物生态学报, 41(2): 165-174.
[9] 蒙洋, 邱月, 张亮, 王翠玲, 臧振华, 张学耀, 申国珍, 闫彩凤, 陈全胜. (2017) 地理距离、海拔和气候差异对独龙江流域维管植物群落物种空间相异性的影响. 生物多样性, 25(12): 1313-1320.
[10] 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开. (2017) 秦岭西部森林群落相似性递减格局及其影响因素. 生物多样性, 25(1): 3-10.
[11] 李艳朋, 许涵, 李意德, 骆土寿, 陈德祥, 周璋, 林明献, 杨怀. (2016) 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应. 植物生态学报, 40(9): 861-870.
[12] 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌. (2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40(5): 508-522.
[13] 李新辉, 刘延虹, 刘晔, 许玥, 杨阳, 沈泽昊. (2016) 地理距离及环境差异对云南元江干热河谷植物群落beta多样性的影响. 生物多样性, 24(4): 399-406.
[14] 闫琰, 张新娜, 姚杰, 张春雨, 赵秀海. (2016) 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态. 植物生态学报, 40(2): 127-139.
[15] 农友, 郑路, 贾宏炎, 卢立华, 黄德卫, 黄柏华, 雷丽群. (2015) 广西大青山次生林的群落特征及主要乔木种群的空间分布格局. 生物多样性, 23(3): 321-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed