生物多样性 ›› 2014, Vol. 22 ›› Issue (2): 223-230. DOI: 10.3724/SP.J.1003.2014.08178
所属专题: 生物入侵
收稿日期:
2013-08-03
接受日期:
2013-10-15
出版日期:
2014-03-20
发布日期:
2014-04-03
通讯作者:
朱耿平,高玉葆
基金资助:
Gengping Zhu1,*(), Qiang Liu1, Yubao Gao2,*(
)
Received:
2013-08-03
Accepted:
2013-10-15
Online:
2014-03-20
Published:
2014-04-03
Contact:
Zhu Gengping,Gao Yubao
摘要:
生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求, 模拟物种的分布。在模拟入侵物种分布时, 经典生态位模型包括模型构建于物种本土分布地, 然后将其转移并投射至另一地理区域, 来模拟入侵物种的潜在分布。然而在模型运用时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。提高生态位模型的转移能力, 可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考。作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例, 从模型的构建材料(即物种分布点和环境变量)入手, 全面阐述提高模型转移能力的策略。在构建模型之前, 需要充分了解入侵物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识。在模型构建环节上, 物种分布点不仅要充分覆盖物种的地理分布和生态空间的范围, 同时要降低物种采样点偏差; 环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性, 以及不同地理种群间生态空间是否一致, 同时要降低环境变量的空间维度; 模型构建区域要真实地反映物种的地理分布范围, 并考虑种群的平衡状态。作者认为, 在生态位保守的前提下, 如果模型是构建在一个合理方案的基础上, 生态位模型的转移能力是可以保证的, 在以模型转移能力较低的现象来阐述生态位分化时需要引起注意。
朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种 的潜在分布. 生物多样性, 22, 223-230. DOI: 10.3724/SP.J.1003.2014.08178.
Gengping Zhu,Qiang Liu,Yubao Gao (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. DOI: 10.3724/SP.J.1003.2014.08178.
图1 生态位模型与物种分布模型。生态位模型是指模型构建于物种的本土分布地(即①和②)后, 转移并投射至另一地理空间(即③)去判断物种潜在分布的能力。物种分布模型指在模型构建区域内, 对物种分布点及其周围区域的预测(即①和②, 虚线区域)。A区代表本土范围内适宜物种生存, 但是由于物种迁移能力有限而未被占领的区域; B区代表本土范围内适宜物种生存, 但是由于物种间的相互作用而未被占领的区域; C区代表入侵地适宜物种生存的区域; D代表现实生态位; E代表基础生态位。
Fig. 1 Exhibition of ecological niche modeling and species distribution modeling. Ecological niche model refers to niche model calibrated in native area (① and ②) and transferred into the introduced area (③), whereas species distribution model refers to niche model calibration without transferring across space (① and ②, dashed area). A, Native suitable area but not colonized due to dispersal limitation; B, Native suitable area but not colonized due to biotic interaction; C, Suitable area in introduced area; D, Realized niche; E, Fundamental niche.
图2 环境变量的维度对模型转移能力的影响(以茶翅蝽为例, 改自Zhu et al., 2012a)。模型构建于茶翅蝽本土分布范围后转移至美国。白色的物种分布点用于构建模型, 黑色的分布点用于校验模型, 颜色较深表明物种分布的可能性较大。左侧两个图采用10个环境变量(A), 右侧两个图采用6个环境变量(B)。当采用较少的环境变量时, 模型的转移能力可以明显提高。
Fig. 2 Effect of environmental space dimensionality on native model transferability (A case study of Halyomorpha halys, adopted from Zhu et al., 2012a). Niche models were constructed based on native range of H. halys and transferred into the US. White dots were used to fit niche model whereas black dots used to test model. Dark color represents high suitability, and light indicates low suitability. Left panel using 10 variables (A), and right panel using six variables (B). When using less environmental variables, niche model transferability was greatly improved.
图3 模型构建区域对模型转移能力的影响(以互花米草为例, 修改自Zhu et al., 2013a)。左图示本土范围内两种不同的模型构建区域: 一个是较大的方形区域(A), 另一个是较小的反映互花米草迁移能力的沿海区域(B)。右图是基于这两种区域的模型转移至入侵地的遗漏率, 其中基于沿海区域的模型遗漏率较小, 转移能力较强。
Fig. 3 Effect of geographic background space on the transferability of niche model: a case study of Spartina alterniflora (adopted from Zhu et al., 2013a). Left panel exhibited the squared (A) and coastal (B) areas used in native niche model calibration. Niche model based on the coastal areas showed high transferability in capturing the introduced records (right panel).
[1] | Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2012) Delimiting the geographical background in species distribution modeling. Journal of Biogeography, 39, 1383–1390. |
[2] | Anderson RP (2012) Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences, 1260, 66–80. |
[3] | Anderson RP, Gonzalez Jr. I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling, 222, 2796–2811. |
[4] | Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393. |
[5] | Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810–1819. |
[6] | Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography, 35, 250–258. |
[7] | Broennimann O, Treier UA, Müller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709. |
[8] | Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50–152. |
[9] | Feeley KJ, Silman MR (2011) Keep collecting: accurate species distribution modelling requires more collections than previously thought. Diversity and Distributions, 17, 1132–1140. |
[10] | Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?Global Ecology and Biogeography, 16, 24–33. |
[11] | Grinnell J (1917) The niche-relationships of the California Thrasher. The Auk, 34, 427–433. |
[12] | Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785. |
[13] | Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. |
[14] | Ju RT (鞠瑞亭), Li H (李慧), Shi ZR (石正人), Li B (李博) (2012) Progress of biological invasions research in China over the last decade. Biodiversity Science(生物多样性), 20, 581–611. (in Chinese with English abstract) |
[15] | Li XW (李小文), Cao CX (曹春香), Chang CY (常超一) (2007) The first law of geography and spatial-temporal proximity. Chinese Journal of Nature(自然杂志), 29, 68–71. (in Chinese with English abstract) |
[16] | Martínez-Meyer E, Díaz-Porras D, Peterson AT, Yáñez-Arenas C (2012) Ecological niche structure and rangewide abundance patterns of species. Biology Letters, 9, 20120637. doi: 10.1098/rsbl.2012.0637. |
[17] | Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography, 19, 122–133. |
[18] | Owens HL, Campbell LP, Dornak L, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18. |
[19] | Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions, 13, 890–902. |
[20] | Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful?Global Ecology Biogeography, 12, 361–371. |
[21] | Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117. |
[22] | Peterson AT, Soberón J (2012a) Integrating fundamental concepts of ecology, biogeography, and sampling into effective ecological niche modeling and species distribution modeling. Plant Biosystems, 146, 789–796. |
[23] | Peterson AT, Soberón J (2012b) Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza and Conservação, 10, 102–107. |
[24] | Peterson AT, Soberón J, Pearson RG, Anderson RP, Nakamura M, Martínez-Meyer E, Araújo MB (2011) Ecological Niches and Geographical Distributions. Princeton University Press, New Jersey. |
[25] | Rödder D, Schmidtlein S, Veith M, Lötters S (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied?PLoS ONE, 4, e7843. |
[26] | Saupe E, Barve V, Myers C, Soberón J, Barve N, Hensz C, Peterson AT, Owens HL, Lira-Noriega A (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecological Modelling, 237–238, 11–22. |
[27] | Tobler ERW (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240. |
[28] | Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18, 73–83. |
[29] | Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, Clerck OD (2013) Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS ONE, 8, e68337. |
[30] | Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006) Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica(植物分类学报), 44, 559–588. (in Chinese with English abstract). |
[31] | Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773. |
[32] | Zhu GP, Bu WJ, Gao YB, Liu GQ (2012a) Potential geographic distribution of Brown Marmorated Stink Bug invasion (Halyomorpha halys). PLoS ONE, 7, e31246. |
[33] | Zhu GP, Gao YB, Zhu L (2013a) Delimiting the coastal geographic background to predict potential distribution of Spartina alterniflora. Hydrobiologia, 717, 177–187. |
[34] | Zhu GP (朱耿平), Liu GQ (刘国卿), Bu WJ (卜文俊), Gao YB (高玉葆) (2013) Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science(生物多样性), 21, 90–98. (in Chinese with English abstract) |
[35] | Zhu GP, Petersen MJ, Bu WJ (2012b) Selecting biological meaningful environmental dimensions of low discrepancy among ranges to predict potential distribution of bean plataspid invasion. PLoS ONE, 7, e46247. |
[36] | Zhu GP, Rédei D, Kment P, Bu WJ (2013b) Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biological Invasions, doi: 10.1007/s10530- 013-0559-z. |
[37] | Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences, USA, 106, 19723–19728. |
[1] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[2] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[3] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[4] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[5] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[6] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[7] | 王然, 乔慧捷. 生态位模型在流行病学中的应用[J]. 生物多样性, 2020, 28(5): 579-586. |
[8] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[9] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[10] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[11] | 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504. |
[12] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[13] | 范靖宇, 李汉芃, 杨琢, 朱耿平. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2): 140-148. |
[14] | 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950. |
[15] | 丁晨晨, 胡一鸣, 李春旺, 蒋志刚. 印度野牛在中国的分布及其栖息地适宜性分析[J]. 生物多样性, 2018, 26(9): 951-961. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn