生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 22689. DOI: 10.17520/biods.2022689
刘志发1, 王新财2, 龚粤宁1, 陈道剑2, 张强2,*()
收稿日期:
2022-12-17
接受日期:
2023-05-08
出版日期:
2023-08-20
发布日期:
2023-08-14
通讯作者:
*E-mail: zhangqiang06@giz.gd.cn
基金资助:
Zhifa Liu1, Xincai Wang2, Yuening Gong1, Daojian Chen2, Qiang Zhang2,*()
Received:
2022-12-17
Accepted:
2023-05-08
Online:
2023-08-20
Published:
2023-08-14
Contact:
*E-mail: zhangqiang06@giz.gd.cn
摘要:
生物多样性的海拔格局一直是生态学、生物地理学和保护生物学研究的核心问题之一。本研究利用红外相机对广东南岭国家级自然保护区完整垂直带的兽类和鸟类开展连续10年的野外监测, 分析了保护区当前鸟兽多样性及受胁情况, 并通过整合水平与垂直分布的多样性格局开展热点与空缺分析。2012-2021年间共设置了116个红外相机点位, 相机累计拍摄85,164个工作日, 获得可识别独立有效照片21,194张, 共记录到兽类24种, 鸟类50种。兽类受威胁物种比例较高, 为45.83%。相对多度指数(relative abundance index, RAI)最高的5种兽类为赤麂(Muntiacus vaginalis)、小麂(M. reevesi)、红腿长吻松鼠(Dremomys pyrrhomerus)、鼬獾(Melogale moschata)和藏酋猴(Macaca thibetana); 而红颊獴(Herpestes javanicus)和水鹿(Rusa unicolor) RAI最低, 仅各拍摄到1次。RAI最高的4种鸟类是白鹇(Lophura nycthemera)、紫啸鸫(Myophonus caeruleus)、黄腹角雉(Tragopan caboti)和白眉山鹧鸪(Arborophila gingica), 有42种鸟类的RAI指数小于1, 主要来自雀形目、鴷形目和鸮形目。广义加性模型结果表明, 兽类和鸟类的物种丰富度与海拔显著相关, 呈典型的“中峰格局”, 中海拔(1,000-1,400 m)物种丰富度较高。β多样性分析表明低海拔和高海拔与其他海拔段之间的分类相异性最高, 中海拔段之间的相异性相对较小。热点与空缺分析表明, 广东南岭国家级自然保护区兽类和鸟类主要集中分布在3个热点地区, 且全部分布于中高海拔; 同时部分区域具有较高的鸟兽多样性, 但并未包含在保护区范围内。总体看来, 当下广东南岭国家级自然保护区野生动物仍面临较为严峻的保护压力。在南岭国家公园建设大背景下, 我们建议当地管理部门: (1)以物种为单元, 针对重点物种制定保护管理政策, 特别是大中型兽类; (2)充分重视保护区中高海拔地段的生境管理, 维持区内完整的气候与生物垂直带谱; (3)建立多营养级生物多样性监测网络, 关注人为干扰、环境因子、功能特征、种间互作网络和进化历史等综合因素对野生动物分布格局的长期影响。
刘志发, 王新财, 龚粤宁, 陈道剑, 张强 (2023) 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征. 生物多样性, 31, 22689. DOI: 10.17520/biods.2022689.
Zhifa Liu, Xincai Wang, Yuening Gong, Daojian Chen, Qiang Zhang (2023) Diversity and elevational distribution of birds and mammals based on infrared camera monitoring in Guangdong Nanling National Nature Reserve. Biodiversity Science, 31, 22689. DOI: 10.17520/biods.2022689.
图2 广义加性模型拟合的物种丰富度和Chao 1物种丰富度估计值与海拔梯度的关系, 包括全部物种(a, d)、兽类(b, e)和鸟类(c, f)
Fig. 2 The simulated relationship between species richness and Chao 1 estimator by generalized additive models, including all species (a, d), mammals (b, e) and birds (c, f)
指数 Indices | 全部物种 All species | 兽类 Mammals | 鸟类 Birds |
---|---|---|---|
βmBC | 0.81 | 0.80 | 0.83 |
βmbal | 0.66 | 0.53 | 0.71 |
βmgra | 0.15 | 0.27 | 0.12 |
βmJac | 0.84 | 0.81 | 0.86 |
βmtu | 0.63 | 0.38 | 0.70 |
βmne | 0.21 | 0.43 | 0.15 |
表1 全海拔段总体Bray-Curtis相异性指数及其组分、总体Jaccard相异性指数及其组分。βmBC: Bray-Curtis相异性指数; βmbal: 多度平衡变化; βmgra: 多度梯度; βmJac: Jaccard相异性指数; βmtu: 物种替换; βmne: 物种嵌套。
Table 1 The multi-site Bray-Curtis dissimilarity and Jaccard dissimilarity, and their components between pairs of elevation ranges. βmBC, Bray-Curtis dissimilarity; βmbal, Balanced changes in species abundance; βmgra, Abundance gradients; βmJac, Jaccard dissimilarity; βmtu, Species turnover; βmne, Species nestedness.
指数 Indices | 全部物种 All species | 兽类 Mammals | 鸟类 Birds |
---|---|---|---|
βmBC | 0.81 | 0.80 | 0.83 |
βmbal | 0.66 | 0.53 | 0.71 |
βmgra | 0.15 | 0.27 | 0.12 |
βmJac | 0.84 | 0.81 | 0.86 |
βmtu | 0.63 | 0.38 | 0.70 |
βmne | 0.21 | 0.43 | 0.15 |
指数 Indices | 全部物种 All species | 兽类 Mammals | 鸟类 Birds |
---|---|---|---|
βpBC | 0.52 ± 0.20 | 0.54 ± 0.25 | 0.52 ± 0.16 |
βpbal | 0.35 ± 0.20 | 0.25 ± 0.19 | 0.35 ± 0.21 |
βpgra | 0.17 ± 0.11 | 0.29 ± 0.22 | 0.16 ± 0.13 |
Rgra/BC | 0.34 ± 0.23 | 0.50 ± 0.29 | 0.34 ± 0.27 |
βpJac | 0.52 ± 0.13 | 0.45 ± 0.22 | 0.56 ± 0.11 |
βptu | 0.25 ± 0.16 | 0.10 ± 0.14 | 0.32 ± 0.19 |
βpne | 0.27 ± 0.20 | 0.36 ± 0.26 | 0.24 ± 0.19 |
Rne/Jac | 0.49 ± 0.31 | 0.75 ± 0.32 | 0.43 ± 0.30 |
表2 成对海拔段之间Bray-Curtis相异性指数及其组分、Jaccard相异性指数及其组分的平均值和标准偏差。βpBC: Bray-Curtis相异性指数; βpbal: 多度平衡变化; βpgra: 多度梯度; Rgra/BC: βpgra对βpBC的比值; βpJac: Jaccard相异性指数; βptu: 物种替换; βpne: 物种嵌套; Rne/Jac: βpne对βpJac的比值。
Table 2 The mean and standard deviation values of the Bray-Curtis dissimilarity and Jaccard dissimilarity, and their components between pairs of elevation ranges. βpBC, Bray-Curtis dissimilarity; βpbal, Balanced changes in species abundances; βpgra, Abundance gradients; Rgra/BC, Ratio of βpgra and βpBC; βpJac, Jaccard dissimilarity; βptu, Species turnover; βpne, Species nestedness; Rne/Jac, Ratio of βpne and βpJac.
指数 Indices | 全部物种 All species | 兽类 Mammals | 鸟类 Birds |
---|---|---|---|
βpBC | 0.52 ± 0.20 | 0.54 ± 0.25 | 0.52 ± 0.16 |
βpbal | 0.35 ± 0.20 | 0.25 ± 0.19 | 0.35 ± 0.21 |
βpgra | 0.17 ± 0.11 | 0.29 ± 0.22 | 0.16 ± 0.13 |
Rgra/BC | 0.34 ± 0.23 | 0.50 ± 0.29 | 0.34 ± 0.27 |
βpJac | 0.52 ± 0.13 | 0.45 ± 0.22 | 0.56 ± 0.11 |
βptu | 0.25 ± 0.16 | 0.10 ± 0.14 | 0.32 ± 0.19 |
βpne | 0.27 ± 0.20 | 0.36 ± 0.26 | 0.24 ± 0.19 |
Rne/Jac | 0.49 ± 0.31 | 0.75 ± 0.32 | 0.43 ± 0.30 |
图3 成对海拔段之间Bray-Curtis相异性指数及其组分、Jaccard相异性指数及其组分的热力图。βpBC: Bray-Curtis相异性指数; βpbal: 多度平衡变化; βpgra: 多度梯度; Rgra/BC: βpgra对βpBC的比值。βpJac: Jaccard相异性指数; βptu: 物种替换; βpne: 物种嵌套; Rne/Jac: βpne对βpJac的比值。
Fig. 3 The heat maps of the Bray-Curtis dissimilarity and its components and Jaccard dissimilarity and its components between pairs of elevation ranges. βpBC, Bray-Curtis dissimilarity; βpbal, Balanced changes in species abundances; βpgra, Abundance gradients; Rgra/BC, Ratio of βpgra and βpBC; βpJac, Jaccard dissimilarity; βptu, Species turnover; βpne, Species nestedness; Rne/Jac, Ratio of βpne and βpJac.
图4 基于MaxEnt模型预测的广东南岭国家级自然保护区鸟兽多样性分布格局
Fig. 4 Diversity distribution pattern of birds and mammals predicted by MaxEnt models in Guangdong Nanling National Nature Reserve
[1] |
Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223-1232.
DOI URL |
[2] |
Baselga A (2013) Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4, 552-557.
DOI URL |
[3] |
Baselga A (2017) Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8, 799-808.
DOI URL |
[4] |
Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186, 251-270.
DOI URL |
[5] | Cai YS, Gong YN, Lu XL, Xiao ZS, Wang XC (2016) Camera trap survey of mammal diversity in Nanling forests. Ecological Science, 35(2), 57-61. (in Chinese with English abstract) |
[ 蔡玉生, 龚粤宁, 卢学理, 肖治术, 王新财 (2016) 南岭森林哺乳动物多样性的红外相机监测. 生态科学, 35(2), 57-61.] | |
[6] |
Chen LJ, Xiao WH, Xiao ZS (2019) Limitations of relative abundance indices calculated from camera-trapping data. Biodiversity Science, 27, 243-248. (in Chinese with English abstract)
DOI |
[ 陈立军, 肖文宏, 肖治术 (2019) 物种相对多度指数在红外相机数据分析中的应用及局限. 生物多样性, 27, 243-248.]
DOI |
|
[7] | Chen WC, Lu KH, Guan GX, Deng JX (1993) A research of land vertebrata in Ruyang Babaoshan Nature Reserve of Ruyuan County, Guangdong Province. Ecological Science, 12, 147-165. (in Chinese with English abstract) |
[ 陈万成, 卢开和, 关贯勋, 邓巨燮 (1993) 乳阳八宝山自然保护区一带的陆栖脊椎动物调查初报. 生态科学, 12, 147-165.] | |
[8] |
Colwell RK, Lees DC (2000) The mid-domain effect: Geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15, 70-76.
DOI URL |
[9] |
Ding WN, Ree RH, Spicer RA, Xing YW (2020) Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science, 369, 578-581.
DOI URL |
[10] |
Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
DOI URL |
[11] |
Gastón A, García-Viñas JI (2011) Modelling species distributions with penalised logistic regressions: A comparison with maximum entropy models. Ecological Modelling, 222, 2037-2041.
DOI URL |
[12] | Gong H, Liu H, Xiang X, Jiao F, Cao L, Xu X (2022) 1 km Monthly Precipitation and Temperatures Dataset for China from 1952 to 2019 based on a Brand-New and High-Quality Baseline Climatology Surface. Earth System Science Data Discussions, https://doi.org/10.5194/essd-2022-45. |
[13] |
Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, McCain CM, Bowie RCK, Moritz C, Baines SB, Schneider CJ, VanDerWal J, Rahbek C, Kozak KH, Sanders NJ (2014) The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. Ecography, 37, 711-719.
DOI URL |
[14] |
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853.
DOI PMID |
[15] |
Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment, 30, 751-777.
DOI URL |
[16] | Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 501-551. (in Chinese and in English) |
[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 501-551.] | |
[17] |
Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[18] |
Lee PF, Ding TS, Hsu FH, Geng S (2004) Breeding bird species richness in Taiwan: Distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, 31, 307-314.
DOI URL |
[19] | Li BJ, Xu XC, Liu XP, Shi Q, Zhuang HM, Cai YT, He D (2022) An improved global land cover mapping in 2015 with 30 m resolution (GLC- 2015) based on a multi-source product fusion approach. Earth System Science Data Discussions, 15, 2347-2373. |
[20] |
Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014) Camera-trapping in wildlife research and conservation in China: Review and outlook. Biodiversity Science, 22, 685-695. (in Chinese with English abstract)
DOI |
[ 李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014) 红外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性, 22, 685-695.]
DOI |
|
[21] |
Li YM, Xu L, Ma Y, Yang JY, Yang YH (2003) The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: Distribution patterns along elevational gradient. Biodiversity Science, 11, 1-9. (in Chinese with English abstract)
DOI URL |
[ 李义明, 许龙, 马勇, 杨敬元, 杨玉慧 (2003) 神农架自然保护区非飞行哺乳动物的物种丰富度: 沿海拔梯度的分布格局. 生物多样性, 11, 1-9.]
DOI |
|
[22] |
Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10, 3-13.
DOI URL |
[23] |
Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD (2018) Evolutionary history of the angiosperm flora of China. Nature, 554, 234-238.
DOI URL |
[24] | Ma J, Wu YJ, Xia L, Zhang Q, Ma Y, Yang QS (2010) Elevational diversity of small mammals in Luoji Mt. Nature Reserve, Sichuan Province. Acta Theriologica Sinica, 30, 400-410. (in Chinese with English abstract) |
[ 马俊, 吴永杰, 夏霖, 张乾, 马勇, 杨奇森 (2010) 螺髻山自然保护区非飞行小型哺乳动物垂直多样性调查. 兽类学报, 30, 400-410.] | |
[25] |
McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360.
DOI URL |
[26] | McCain CM, Grytnes AJ (2010) Elevational gradients in species richness. In: Encyclopedia of Life Sciences, pp. 1-10. John Wiley and Sons, Ltd, Chichester. |
[27] |
Mu HW, Li XC, Wen YN, Huang JX, Du PJ, Su W, Miao SX, Geng MQ (2022) A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Scientific Data, 9, 176.
DOI PMID |
[28] |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
DOI |
[29] | Pang XF (2003) Biodiversity of the Guangdong Nanling National Nature Reserve. Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
[ 庞雄飞 (2003) 广东南岭国家级自然保护区生物多样性硏究. 广东科技出版社, 广州.] | |
[30] |
Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Gerschlauer F, Gütlein A, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Kühnel A, Mayr AV, Mwangomo E, Ngereza C, Njovu HK, Otte I, Pabst H, Renner M, Röder J, Rutten G, Schellenberger Costa D, Sierra-Cornejo N, Vollstädt MGR, Dulle HI, Eardley CD, Howell KM, Keller A, Peters RS, Ssymank A, Kakengi V, Zhang J, Bogner C, Böhning-Gaese K, Brandl R, Hertel D, Huwe B, Kiese R, Kleyer M, Kuzyakov Y, Nauss T, Schleuning M, Tschapka M, Fischer M, Steffan-Dewenter I (2019) Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568, 88-92.
DOI |
[31] |
Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Mwangomo E, Ngereza C, Otte I, Röder J, Rutten G, Schellenberger Costa D, Tardanico J, Zancolli G, Deckert J, Eardley CD, Peters RS, Rödel MO, Schleuning M, Ssymank A, Kakengi V, Zhang J, Böhning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M, Fischer M, Steffan-Dewenter I (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi- taxa community level. Nature Communications, 7, 13736.
DOI |
[32] |
Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31, 161-175.
DOI URL |
[33] |
Potapov P, Li XY, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165.
DOI URL |
[34] |
Quintero I, Jetz W (2018) Global elevational diversity and diversification of birds. Nature, 555, 246-250.
DOI URL |
[35] |
Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875-902.
DOI URL |
[36] |
Sanders NJ, Rahbek C (2012) The patterns and causes of elevational diversity gradients. Ecography, 35, 1-3.
DOI URL |
[37] | Shen Y, Holyoak M, Goodale E, Mammides C, Zou FS, Chen YX, Zhang CM, Quan Q, Zhang Q (2022) Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 289, 20221840. |
[38] |
Stevens GC (1992) The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893-911.
DOI URL |
[39] |
Tang ZY, Wang ZH, Zheng CY, Fang JY (2006) Biodiversity in China’s mountains. Frontiers in Ecology and the Environment, 4, 347-352.
DOI URL |
[40] | Von Humboldt A, Bonpland A (2009) Essay on the Geography of Plants. University of Chicago Press, Chicago. |
[41] |
Wang B, Huang Y, Li JT, Dai Q, Wang YZ, Yang DD (2018) Amphibian species richness patterns in karst regions in Southwest China and its environmental associations. Biodiversity Science, 26, 941-950. (in Chinese with English abstract)
DOI |
[ 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德 (2018) 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系. 生物多样性, 26, 941-950.]
DOI |
|
[42] | Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021) Catalogue of mammals in China (2021). Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract) |
[ 魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽钧, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021) 中国兽类名录(2021版). 兽类学报, 41, 487-501.]
DOI |
|
[43] | Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along the elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract) |
[ 吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.] | |
[44] |
Wu YJ, Yang QS, Xia L, Feng ZJ, Zhou HM (2012) Species diversity and distribution pattern of non-volant small mammals along the elevational gradient on eastern slope of Gongga Mountain. Acta Ecologica Sinica, 32, 4318-4328. (in Chinese with English abstract)
DOI URL |
[ 吴永杰, 杨奇森, 夏霖, 冯祚建, 周华明 (2012) 贡嘎山东坡非飞行小型兽类物种多样性的垂直分布格局. 生态学报, 32, 4318-4328.] | |
[45] |
Xiao ZS, Chen LJ, Song XJ, Shu ZF, Xiao RG, Huang XQ (2019) Species inventory and assessment of large- and medium-size mammals and pheasants using camera trapping in the Chebaling National Nature Reserve, Guangdong Province. Biodiversity Science, 27, 237-242. (in Chinese with English abstract)
DOI |
[ 肖治术, 陈立军, 宋相金, 束祖飞, 肖荣高, 黄小群 (2019) 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估. 生物多样性, 27, 237-242.] | |
[46] |
Xiao ZS, Li XH, Jiang GS (2014) Applications of camera trapping to wildlife surveys in China. Biodiversity Science, 22, 683-684. (in Chinese)
DOI |
[ 肖治术, 李欣海, 姜广顺 (2014) 红外相机技术在我国野生动物监测研究中的应用. 生物多样性, 22, 683-684.]
DOI |
|
[47] | Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, E3444-E3451. |
[48] |
Yu JP, Wang JY, Xiao HY, Chen XN, Chen SW, Li S, Shen XL (2019) Camera-trapping survey of mammalian and avian biodiversity in Qianjiangyuan National Park, Zhejiang Province. Biodiversity Science, 27, 1339-1344. (in Chinese with English abstract)
DOI |
[ 余建平, 王江月, 肖慧芸, 陈小南, 陈声文, 李晟, 申小莉 (2019) 利用红外相机公里网格调查钱江源国家公园的兽类及鸟类多样性. 生物多样性, 27, 1339-1344.]
DOI |
|
[49] | Zhang J, Huang XL (2019) Biodiversity along elevational gradients: The commemoration of the 250th birthday of Alexander von Humboldt. Wuyi Science Journal, 35(1), 1-3. (in Chinese) |
[ 张健, 黄晓磊 (2019) 生物多样性的海拔梯度格局——纪念亚历山大·冯·洪堡诞辰250周年. 武夷科学, 35(1), 1-3.] | |
[50] |
Zhang Q, Holyoak M, Chen CW, Liu ZF, Liu JJ, Che XL, Dong AQ, Yang CT, Zou FS (2020a) Trait-mediated filtering drives contrasting patterns of species richness and functional diversity across montane bird assemblages. Journal of Biogeography, 47, 301-312.
DOI URL |
[51] | Zhang Q, Holyoak M, Goodale E, Liu ZF, Shen Y, Liu JJ, Zhang M, Dong AQ, Zou FS (2020b) Trait-environment relationships differ between mixed-species flocking and nonflocking bird assemblages. Ecology, 101, e03124. |
[52] | Zhang Q, Zou FS, Zhang M, Huang JH (2010) The distribution pattern of the babblers (Timaliidae) in China. Acta Zootaxonomica Sinica, 35, 135-144. (in Chinese with English abstract) |
[ 张强, 邹发生, 张敏, 黄俊辉 (2010) 中国画眉科鸟类分布格局探讨. 动物分类学报, 35, 135-144.] | |
[53] |
Zhang QW, Gong YN, Song XJ, Wang XC, Yang CT, Shu ZF, Zou FS (2018) Comparing the effectiveness of camera trapping to traditional methods for biodiversity surveys of forest birds. Biodiversity Science, 26, 229-237. (in Chinese with English abstract)
DOI |
[ 张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生 (2018) 红外相机技术与其他几种森林鸟类多样性调查方法的比较. 生物多样性, 26, 229-237.]
DOI |
|
[54] | Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese) |
[ 郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.] | |
[55] |
Zhou GY, Zhang HO, Zhou P (2018) Multi-disciplinary research values of the Nanling Mountains. Tropical Geography, 38, 293-298. (in Chinese with English abstract)
DOI |
[ 周国逸, 张虹鸥, 周平 (2018) 南岭山地的多学科综合研究价值. 热带地理, 38, 293-298.] | |
[56] |
Zhu SY, Duan F, Li S (2017) Promoting diversity inventory and monitoring of birds through the camera-trapping network in China: Status, challenges and future outlook. Biodiversity Science, 25, 1114-1122. (in Chinese with English abstract)
DOI |
[ 朱淑怡, 段菲, 李晟 (2017) 基于红外相机网络促进我国鸟类多样性监测: 现状、问题与前景. 生物多样性, 25, 1114-1122.]
DOI |
|
[57] | Zou FS, Gong YN, Zhang CM (2018) Animal Diversity in Guangdong Nanling National Nature Reserve. Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
[ 邹发生, 龚粤宁, 张朝明 (2018) 广东南岭国家级自然保护区动物多样性研究. 广东科技出版社, 广州.] | |
[58] | Zou FS, Ye GF (2016) A Checklist on the Distribution of the Vertebrates of Guangdong Province. Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
[ 邹发生, 叶冠锋 (2016) 广东陆生脊椎动物分布名录. 广东科技出版社, 广州.] |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 王鹏, 隋佳容, 丁欣瑶, 王伟中, 曹雪倩, 赵海鹏, 王彦平. 郑州城市公园鸟类群落嵌套分布格局及其影响因素[J]. 生物多样性, 2024, 32(3): 23359-. |
[3] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[4] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[5] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[6] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[7] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[8] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[9] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[10] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[11] | 丁炳扬, 金孝锋, 张永华, 李根有, 陈征海, 张方钢. 浙江野生种子植物的分布格局与区系分区[J]. 生物多样性, 2023, 31(4): 22515-. |
[12] | 孟宏虎, 宋以刚. 东南亚生物地理格局: 回溯与思考[J]. 生物多样性, 2023, 31(12): 23261-. |
[13] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[14] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[15] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn