生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24579. DOI: 10.17520/biods.2024579 cstr: 32101.14.biods.2024579
收稿日期:
2024-12-21
接受日期:
2025-04-02
出版日期:
2025-04-20
发布日期:
2025-04-14
通讯作者:
*E-mail: jihuawu@fudan.edu.cn
基金资助:
Song Wei(), Cheng Cai(
), Wang Jiawei(
), Wu Jihua*(
)(
)
Received:
2024-12-21
Accepted:
2025-04-02
Online:
2025-04-20
Published:
2025-04-14
Contact:
*E-mail: jihuawu@fudan.edu.cn
Supported by:
摘要:
植物多样性的提高可以促进生态系统功能, 两者之间的正向关系通常由植物-植物间相互作用来解释, 然而越来越多的研究表明, 土壤微生物在调控植物多样性-生态系统功能关系中发挥着重要作用。本文首先综述了植物多样性如何影响土壤微生物, 以及土壤微生物如何影响生态系统功能, 然后重点围绕特定土壤微生物功能群, 介绍其如何介导植物多样性-生产力关系的相关研究进展。土壤微生物可能通过响应植物多样性的变化, 从而间接地影响生态系统功能; 也可能直接介导了植物多样性与生态系统功能之间的关系。未来研究需重点关注土壤微生物调控植物多样性-生态系统功能关系的途径, 并量化土壤微生物对植物多样性-生态系统功能关系影响的相对贡献, 为理解全球气候变化背景下生物多样性丧失的影响提供理论依据。
宋威, 程才, 王嘉伟, 吴纪华 (2025) 土壤微生物对植物多样性-生态系统功能关系的调控作用. 生物多样性, 33, 24579. DOI: 10.17520/biods.2024579.
Song Wei, Cheng Cai, Wang Jiawei, Wu Jihua (2025) Soil microbes regulate the relationships between plant diversity and ecosystem functions. Biodiversity Science, 33, 24579. DOI: 10.17520/biods.2024579.
图1 土壤微生物对植物多样性-生态系统功能关系的调控作用概念图。箭头表示路径。植物多样性直接影响生态系统功能(路径1); 植物多样性通过作用于土壤微生物进而影响生态系统功能(路径2); 土壤微生物介导植物多样性-生态系统功能关系(路径3)。AMF: 丛枝菌根真菌; EMF: 外生菌根真菌。
Fig. 1 Conceptual diagram illustrating the role of soil microorganisms in regulating the plant diversity-ecosystem functions relationships. The arrows indicate the pathways. Plant diversity directly influences ecosystem functions (pathway 1), and indirectly influences ecosystem functions through its effects on soil microorganisms (pathway 2). Soil microorganisms directly mediate the plant diversity-ecosystem functions relationships (pathway 3). AMF, Arbuscular mycorrhizal fungi; EMF, Ectomycorrhizal fungi.
图2 菌根真菌对植物多样性-生产力关系的驱动机制概念图。黑色和白色圆圈分别代表丛枝菌根真菌共生植物物种和外生菌根真菌共生植物物种, 不同的圆圈线条类型表示不同物种, 圆圈大小代表植物物种资源利用能力的相对强弱。对于丛枝菌根真菌共生植物而言, 高植物多样性条件下, 丛枝菌根真菌主要通过促进宿主间对资源的互补利用来加强植物多样性对生产力的促进作用(A); 对于外生菌根真菌共生植物而言, 尽管宿主间存在互补利用, 但其主要通过提高特定宿主的资源利用能力来加强植物多样性-生产力关系(B); 当宿主与两种菌根真菌共存时, 以上两种作用共存(C)。
Fig. 2 Conceptual figure illustrating the mechanisms by which mycorrhizal fungi drive plant diversity-productivity relationships. Black and white circles represent plant species associated with arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF), respectively, with varying line styles denoting different plant species, and the size of the circles indicating the relative strength of resource utilization capabilities of the plant species. For plants in association with arbuscular mycorrhizal fungi, under high plant diversity conditions, AM fungi primarily enhance the positive effect of plant diversity on productivity by promoting complementary resource use among hosts (A). For plants associated with ectomycorrhizal fungi, although complementary utilization among hosts is present, they primarily strengthen the relationship between plant diversity and productivity by enhancing the resource utilization capacity of specific hosts (B). When hosts coexist with both types of mycorrhizal fungi, both of these effects are concurrent (C).
图3 病原菌驱动植物多样性-生产力关系的3种假设。当病原菌对不同多样性植物群落的抑制作用相当时, 病原菌消失后植物多样性-生产力关系的斜率不变(A); 当高多样性的植物群落中某一物种占据主导地位时, 由于该物种相对多度较高, 导致病原菌对高多样性群落的抑制作用强于低多样性群落, 因此病原菌消失后植物多样性-生产力关系的斜率将会升高(B); 当病原菌宿主特异性和负密度依赖性发挥作用时, 病原菌对低多样性植物群落的抑制作用会强于对高多样性植物群落, 那么病原菌消失后植物多样性-生产力关系的斜率将会下降(C)。
Fig. 3 Three hypotheses on pathogen-driven plant diversity-productivity relationships. When pathogens exert equivalent suppressive effects on plant communities of varying diversities, the slope of the plant diversity-productivity relationship remains unchanged after the disappearance of pathogens (A). When a dominant species occupies a leading position in a high-diversity plant community, due to its relatively high abundance, the suppressive effect of pathogens on high-diversity communities is stronger than on low-diversity communities, thus the slope of the plant diversity-productivity relationship will increase after the disappearance of pathogens (B). When pathogen host specificity and negative density dependence effects function, the suppressive effect of pathogens on low-diversity plant communities is stronger than on high-diversity communities, then the slope of the plant diversity-productivity relationship will decrease after the disappearance of pathogens (C).
[1] | Abrahão A, Marhan S, Boeddinghaus RS, Nawaz A, Wubet T, Hölzel N, Klaus VH, Kleinebecker T, Freitag M, Hamer U, Oliveira RS, Lambers H, Kandeler E (2022) Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity. New Phytologist, 236, 1936-1950. |
[2] | Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, USA, 105, 11512-11519. |
[3] | Averill C, Fortunel C, Maynard DS, van den Hoogen J, Dietze MC, Bhatnagar JM, Crowther TW (2022) Alternative stable states of the forest mycobiome are maintained through positive feedbacks. Nature Ecology & Evolution, 6, 375-382. |
[4] | Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell, 172, 1178-1180. |
[5] | Banerjee S, van der Heijden MGA (2023) Soil microbiomes and one health. Nature Reviews Microbiology, 21, 6-20. |
[6] | Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[7] | Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13. |
[8] | Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: The utility of the feedback approach. Journal of Ecology, 85, 561-573. |
[9] | Birkhofer K, Fliessbach A, Gavín-Centol MP, Hedlund K, Ingimarsdóttir M, Jørgensen HB, Kozjek K, Meyer S, Montserrat M, Moreno SS, Laraño JM, Scheu S, Serrano-Carnero D, Truu J, Kundel D (2021) Conventional agriculture and not drought alters relationships between soil biota and functions. Scientific Reports, 11, 23975. |
[10] | Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo L), pp. 533-556. Springer-Verlag, New York. |
[11] | Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101, 128-139. |
[12] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[13] | Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Gutknecht J, Hector A, Jactel H, Koricheva J, Messier C, Muys B, O’Brien MJ, Paquette A, Ponette Q, Potvin C, Reich PB, Scherer-Lorenzen M, Smith AR, Verheyen K, Eisenhauer N, Xu XF (2022) Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 31, 872-885. |
[14] | Chen DM, Pan QM, Bai YF, Hu SJ, Huang JH, Wang QB, Naeem S, Elser JJ, Wu JG, Han XG (2016) Effects of plant functional group loss on soil biota and net ecosystem exchange: A plant removal experiment in the Mongolian grassland. Journal of Ecology, 104, 734-743. |
[15] | Chen QL, Ding J, Zhu YG, He JZ, Hu HW (2020) Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 140, 105766. |
[16] | Chen WQ, Wang JY, Meng ZX, Xu R, Chen J, Zhang YJ, Hu TM (2020) Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytologist, 226, 1129-1143. |
[17] | Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ, Liu L, Deng Y, Rillig MC, Chen BD (2017) Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 110, 12-21. |
[18] | Chen YX, Huang XB, Lang XD, Tang R, Zhang R, Li SF, Su JR (2023) Effects of plant diversity, soil microbial diversity, and network complexity on ecosystem multifunctionality in a tropical rainforest. Frontiers in Plant Science, 14, 1238056. |
[19] | Cheng C, Liu ZK, Zhang Q, Tian X, Ju RT, Li B, van Kleunen M, Chase JM, Wu JH (2024) Genotype diversity enhances invasion resistance of native plants via soil biotic feedbacks. Ecology Letters, 27, e14384. |
[20] | Cheng C, Song W, Liu ZK, Li B, van Kleunen M, Wu JH (2025) Intraspecific diversity mitigates the negative soil-legacy impacts of an invasive plant. New Phytologist, 245, 1277-1287. |
[21] | Craig H, Kennedy JP, Devlin DJ, Bardgett RD, Rowntree JK (2020) Effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on associated soil bacterial communities: A field-based experiment. Ecology and Evolution, 10, 13957-13967. |
[22] | Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS (2019) The global soil community and its influence on biogeochemistry. Science, 365, eaav0550. |
[23] | Dawson W, Schrama M (2016) Identifying the role of soil microbes in plant invasions. Journal of Ecology, 104, 1211-1218. |
[24] | de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 38, 2092-2103. |
[25] | Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32, 189-196. |
[26] | Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119. |
[27] | Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. |
[28] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[29] | Deng M, Hu S, Guo L, Jiang L, Huang Y, Schmid B, Liu C, Chang P, Li S, Liu X, Ma K, Liu L (2023) Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances, 9, eadd4468. |
[30] | Domeignoz-Horta LA, Cappelli SL, Shrestha R, Gerin S, Lohila AK, Heinonsalo J, Nelson DB, Kahmen A, Duan P, Sebag D, Verrecchia E, Laine AL (2024) Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nature Communications, 15, 8065. |
[31] | Dong LZ, Yao XD, Zhang HJ, Deng YY, Hu T, Baquerizo MD, Wang W (2024) Microbial diversity is especially important for supporting soil function in low nitrogen ecosystems. Soil Biology and Biochemistry, 194, 109442. |
[32] | Dong ZH, Zhang JH, He J, Wang JY, Li YY, Ji YB, Liu KX, Wang ZG, Chen WQ (2024) Soil microbial network complexity predicts the multifunctionality of afforestation restoration ecosystems on the Loess Plateau. Acta Ecologica Sinica, 44, 2544-2560. (in Chinese with English abstract) |
[董政宏, 张君红, 何佳, 王健宇, 李玉玉, 冀泳標, 刘凯茜, 王振刚, 陈文青 (2024) 土壤微生物网络复杂性预测黄土高原造林恢复生态系统多功能性. 生态学报, 44, 2544-2560.] | |
[33] | Eagar AC, Abu PH, Brown MA, Moledor SM, Smemo KA, Phillips RP, Case AL, Blackwood CB (2024) Setting the stage for plant-soil feedback: Mycorrhizal influences over conspecific recruitment, plant and fungal communities, and coevolution. Journal of Ecology, doi: 10.1111/1365-2745.14393. |
[34] | Ebeling A, Pompe S, Baade J, Eisenhauer N, Hillebrand H, Proulx R, Roscher C, Schmid B, Wirth C, Weisser WW (2014) A trait-based experimental approach to understand the mechanisms underlying biodiversity-ecosystem functioning relationships. Basic and Applied Ecology, 15, 229-240. |
[35] | Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7, 44641. |
[36] | Eisenhauer N, Mueller K, Ebeling A, Gleixner G, Huang YY, Madaj AM, Roscher C, Weigelt A, Bahn M, Bonkowski M, Brose U, Cesarz S, Feilhauer H, Guimaraes-Steinicke C, Heintz-Buschart A, Hines J, Lange M, Meyer ST, Mohanbabu N, Mommer L, Neuhauser S, Oelmann Y, Rahmanian S, Sasaki T, Scheu S, Schielzeth H, Schmid B, Schloter M, Schulz S, Unsicker SB, Vogel C, Weisser WW, Isbell F (2024) The multiple-mechanisms hypothesis of biodiversity-stability relationships. Basic and Applied Ecology, 79, 153-166. |
[37] | Eisenhauer N, Scheu S, Jousset A (2012) Bacterial diversity stabilizes community productivity. PLoS ONE, 7, e34517. |
[38] | Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology, 27, 282-288. |
[39] | Fahey C, Flory SL (2022) Soil microbes alter competition between native and invasive plants. Journal of Ecology, 110, 404-414. |
[40] | Fahey C, Parker WC, Paquette A, Messier C, Antunes PM (2023) Soil fungal communities contribute to the positive diversity-productivity relationship of tree communities under contrasting water availability. Journal of Ecology, 111, 2023-2037. |
[41] | Fargione J, Tilman D, Dybzinski R, HilleRisLambers J, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity:Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 274, 871-876. |
[42] | Faust K, Raes J (2012) Microbial interactions: From networks to models. Nature Reviews Microbiology, 10, 538-550. |
[43] | Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H, Buscot F, Haider S, Heklau H, Herrmann S, Kühn P, Pruschitzki U, Schädler M, Wagg C, Weigelt A, Wubet T, Eisenhauer N (2018) Mycorrhiza in tree diversity- ecosystem function relationships: Conceptual framework and experimental implementation. Ecosphere, 9, e02226. |
[44] | Fu W, Wang N, Pang F, Huang YL, Wu J, Qi SS, Dai ZC, Du DL (2017) Soil microbiota and plant invasions: Current and future. Biodiversity Science, 25, 1295-1302. (in Chinese with English abstract) |
[付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林 (2017) 土壤微生物与植物入侵: 研究现状与展望. 生物多样性, 25, 1295-1302.] | |
[45] | Gan HY, Li XC, Wang YL, Lü PP, Ji NN, Yao H, Li S, Guo LD (2022) Plants play stronger effects on soil fungal than bacterial communities and co-occurrence network structures in a subtropical tree diversity experiment. Microbiology Spectrum, 10, e00134-00122. |
[46] | Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG (2017) Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences, USA, 114, 11169-11174. |
[47] | Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 332. |
[48] | Guerrero-Ramírez NR, Craven D, Reich PB, Ewel JJ, Isbell F, Koricheva J, Parrotta JA, Auge H, Erickson HE, Forrester DI, Hector A, Joshi J, Montagnini F, Palmborg C, Piotto D, Potvin C, Roscher C, van Ruijven J, Tilman D, Wilsey B, Eisenhauer N (2017) Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology & Evolution, 1, 1639-1642. |
[49] | Gundale MJ, Almeida JP, Wallander H, Wardle DA, Kardol P, Nilsson MC, Fajardo A, Pauchard A, Peltzer DA, Ruotsalainen S, Mason B, Rosenstock N (2016) Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. Journal of Ecology, 104, 1219-1232. |
[50] | He JZ, Li J, Zheng YM (2013) Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 412-421. (in Chinese with English abstract) |
[贺纪正, 李晶, 郑袁明 (2013) 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 412-421.] | |
[51] | Hong PB, Schmid B, De Laender F, Eisenhauer N, Zhang XW, Chen HZ, Craven D, De Boeck HJ, Hautier Y, Petchey OL, Reich PB, Steudel B, Striebel M, Thakur MP, Wang SP (2021) Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25, 555-569. |
[52] | Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350. |
[53] | Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577. |
[54] | Jayaramaiah RH, Martins CSC, Egidi E, Macdonald CA, Wang JT, Liu H, Reich PB, Delgado-Baquerizo M, Singh BK (2025) Soil function-microbial diversity relationship is impacted by plant functional groups under climate change. Soil Biology and Biochemistry, 200, 109623. |
[55] | Jiang P, Wang YZ, Zhang YP, Fei JC, Rong XM, Peng JW, Yin LC, Zhou X, Luo GW (2024) Enhanced productivity of maize through intercropping is associated with community composition, core species, and network complexity of abundant microbiota in rhizosphere soil. Geoderma, 442, 116786. |
[56] | Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[57] | Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 3, 137-141. |
[58] | Landi P, Minoarivelo HO, Brännström Å, Hui C, Dieckmann U (2018) Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60, 319-345. |
[59] | Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. |
[60] | Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H, Engels C, Oelmann Y, Scheu S, Wilcke W, Schulze ED, Gleixner G (2014) Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland. PLoS ONE, 9, e96182. |
[61] | Latz E, Eisenhauer N, Rall BC, Allan E, Roscher C, Scheu S, Jousset A (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 100, 597-604. |
[62] | Li Y, Wang J, Shen CC, Wang JC, Singh BK, Ge Y (2022) Plant diversity improves resistance of plant biomass and soil microbial communities to drought. Journal of Ecology, 110, 1656-1672. |
[63] | Li YN, Qian ZY, Li DJ (2023) Effects of tree diversity on soil microbial community in a subtropical forest in Southwest China. European Journal of Soil Biology, 116, 103490. |
[64] | Liang MX, Johnson D, Burslem DFRP, Yu SX, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu XB (2020) Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 11, 2636. |
[65] | Liang MX, Liu XB, Parker IM, Johnson D, Zheng Y, Luo S, Gilbert GS, Yu SX (2019) Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 5, eaax5088. |
[66] | Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere, 11, e02999. |
[67] | Liu SE, Plaza C, Ochoa-Hueso R, Trivedi C, Wang JT, Trivedi P, Zhou GY, Piñeiro J, Martins CSC, Singh BK, Delgado-Baquerizo M (2023) Litter and soil biodiversity jointly drive ecosystem functions. Global Change Biology, 29, 6276-6285. |
[68] | Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology and Biochemistry, 38, 2336-2343. |
[69] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[70] | Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936-943. |
[71] | Luo S, Png GK, Ostle NJ, Zhou H, Hou X, Luo C, Quinton JN, Schaffner U, Sweeney C, Wang D, Wu J, Wu Y, Bardgett RD (2023) Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biology and Biochemistry, 176, 108865. |
[72] | Luo S, Schmid B, De Deyn GB, Yu SX (2018) Soil microbes promote complementarity effects among co-existing trees through soil nitrogen partitioning. Functional Ecology, 32, 1879-1889. |
[73] | Ma KP (2024) The Chinese Forest Biodiversity Monitoring Network (CForBio) plays a significant role in advancing Chinese ecology onto the global stage. Biodiversity Science, 32, 25039. (in Chinese with English abstract) |
[马克平 (2024) 中国森林生物多样性监测网络(CForBio)助力中国生态学走向世界. 生物多样性, 32, 25039.] | |
[74] | Mallon CA, Poly F, Le Roux X, Marring I, van Elsas JD, Salles JF (2015) Resource pulses can alleviate the biodiversity- invasion relationship in soil microbial communities. Ecology, 96, 915-926. |
[75] | Mariotte P, Canarini A, Dijkstra FA (2017) Stoichiometric N∶P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Journal of Ecology, 105, 958-967. |
[76] | Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 14, 36-41. |
[77] | Marquard E, Schmid B, Roscher C, De Luca E, Nadrowski K, Weisser WW, Weigelt A (2013) Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE, 8, e75599. |
[78] | Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology, 90, 3290-3302. |
[79] | Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M, König S, Lipowsky A, Loranger J, Renker C, Scherber C, Schmid B, Thébault E, Wubet T, Weisser WW, Scheu S, Eisenhauer N (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 94, 1878-1885. |
[80] | Mittelbach GG, McGill BJ (2019) Biodiversity and ecosystem functioning. In: Community Ecology (eds Mittelbach GG, McGill BJ), pp. 38-60. Oxford University Press, New York. |
[81] | Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van der Paauw JW, Schijlen EGWM, Smit-Tiekstra AE, Berendse F, de Kroon H, Dumbrell AJ (2018) Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytologist, 218, 542-553. |
[82] | Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature, 442, 259-264. |
[83] | Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen H-B, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. |
[84] | Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30, 673-684. |
[85] | Pellkofer S, van der Heijden MGA, Schmid B, Wagg C (2016) Soil communities promote temporal stability and species asynchrony in experimental grassland communities. PLoS ONE, 11, e0148015. |
[86] | Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer EA, Ganesanandamoorthy P, Garnier A, Griffiths JI, Greene S, Horgan K, Massie TM, Mächler E, Palamara GM, Seymour M, Petchey OL (2018) Biodiversity increases and decreases ecosystem stability. Nature, 563, 109-112. |
[87] | Porazinska DL, Farrer EC, Spasojevic MJ, Sartwell SA, Smith JG, White CT, King AJ, Suding KN, Schmidt SK (2018) Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99, 1942-1952. |
[88] | Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059-1075. |
[89] | Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18, 85-95. |
[90] | Raza W, Jiang GF, Eisenhauer N, Huang YS, Wei Z, Shen QR, Kowalchuk GA, Jousset A (2024) Microbe-induced phenotypic variation leads to overyielding in clonal plant populations. Nature Ecology & Evolution, 8, 392-399. |
[91] | Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytologist, 170, 445-457. |
[92] | Rettenmaier H, Lingens F (1985) Purification and some properties of two isofunctional juglone hydroxylases from Pseudomonas putida J1. Biological Chemistry Hoppe- Seyler, 366, 637-646. |
[93] | Schmid MW, Hahl T, van Moorsel SJ, Wagg C, De Deyn GB, Schmid B (2019) Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a long-term biodiversity experiment. Molecular Ecology, 28, 863-878. |
[94] | Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303. |
[95] | Shen CC, Wang J, Jing ZW, Qiao NH, Xiong C, Ge Y (2022) Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness. Science of the Total Environment, 818, 151737. |
[96] | Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology, 97, 1274-1280. |
[97] | Simard SW, Durall DM (2004) Mycorrhizal networks: A review of their extent, function, and importance. Canadian Journal of Botany, 82, 1140-1165. |
[98] | Smith SE, Read DJ (2010) Mycorrhizal Symbiosis, 3rd edn. Academic Press, Oxford. |
[99] | Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pasalic E, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, Allan E (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456-459. |
[100] | Song CY, Liu CC, Guo K (2023) Plan and construction progress of the Steppe and Desert Plants Diversity Observation Network. Biodiversity Science, 31, 23383. (in Chinese with English abstract) |
[宋创业, 刘长成, 郭柯 (2023) 草原和荒漠植物多样性监测网规划与建设进展. 生物多样性, 31, 23383.] | |
[101] | Spence LA, Dickie IA, Coomes DA (2011) Arbuscular mycorrhizal inoculum potential: A mechanism promoting positive diversity-invasibility relationships in mountain beech forests in New Zealand? Mycorrhiza, 21, 309-314. |
[102] | Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Research, 65, 183-196. |
[103] | Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, Hallin S (2020) Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6, eaba1715. |
[104] | Tao SQ, Veen GF, Zhang NL, Yu TH, Qu LY (2023) Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. Microbiome, 11, 261. |
[105] | Tao ZB, Zhang KP, Callaway RM, Siemann E, Liu YJ, Huang W (2024) Native plant diversity generates microbial legacies that either promote or suppress non-natives, depending on drought history. Ecology Letters, 27, e14504. |
[106] | Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. The ISME Journal, 10, 346-362. |
[107] | Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science, 346, 1256688. |
[108] | Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai FX, Guo HY, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 21, 4076-4085. |
[109] | Thibaut LM, Connolly SR (2013) Understanding diversity- stability relationships: Towards a unified model of portfolio effects. Ecology Letters, 16, 140-150. |
[110] | Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365. |
[111] | Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845. |
[112] | Tobner CM, Paquette A, Reich PB, Gravel D, Messier C (2014) Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia, 174, 609-621. |
[113] | Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu HW, Anderson IC, Jeffries TC, Zhou JZ, Singh BK (2016) Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships. The ISME Journal, 10, 2593-2604. |
[114] | van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310. |
[115] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[116] | van der Heijden MGA, Wagg C (2013) Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 363, 1-5. |
[117] | van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558, 243-248. |
[118] | van Ruijven J, Ampt E, Francioli D, Mommer L (2020) Do soil-borne fungal pathogens mediate plant diversity- productivity relationships? Evidence and future opportunities. Journal of Ecology, 108, 1810-1821. |
[119] | Vukicevich E, Lowery T, Bowen P, Urbez-Torres JR, Hart M (2016) Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable Development, 36, 48. |
[120] | Wagg C, Barendregt C, Jansa J, Heijden MGAvd(2015) Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. Journal of Ecology, 103, 1233-1244. |
[121] | Wagg C, Bender SF, Widmer F, van der Heijden MGA(2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA 111, 5266-5270. |
[122] | Wagg C, Hautier Y, Pellkofer S, Banerjee S, Schmid B, van der Heijden MGA(2021) Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife, 10, e62813. |
[123] | Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA(2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 92, 1303-1313. |
[124] | Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841. |
[125] | Wang B, Wang SF, Wu LJ, Wu Y, Wang SP, Bai YF, Chen DM (2024) Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability. Global Change Biology, 30, e17483. |
[126] | Wang GZ, Schultz P, Tipton A, Zhang JL, Zhang FS, Bever JD (2019) Soil microbiome mediates positive plant diversity- productivity relationships in late successional grassland species. Ecology Letters, 22, 1221-1232. |
[127] | Wang Y, Wang JM, Qu MJ, Shao S, Li JW (2023) Soil fungal guilds as important integrators linking plant richness and carbon, nitrogen and phosphorus stocks in oasis-desert ecosystems. Soil Biology and Biochemistry, 177, 108930. |
[128] | Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886. |
[129] | Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. |
[130] | Wright SJ (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
[131] | Wu LJ, Chen HS, Chen DM, Wang SP, Wu Y, Wang B, Liu SE, Yue LY, Yu J, Bai YF (2023) Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecology Letters, 26, 858-868. |
[132] | Xi NX, Chen DX, Bahn M, Wu HY, Chu CJ, Cadotte MW, Bloor JMG (2022) Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. Science Advances, 8, eabn3368. |
[133] | Xi NX, Zhang YY, Zhou SR (2023) Plant-soil feedbacks in community ecology. Chinese Journal of Plant Ecology, 47, 170-182. (in Chinese with English abstract) |
[席念勋, 张原野, 周淑荣 (2023) 群落生态学中的植物-土壤反馈研究. 植物生态学报, 47, 170-182.] | |
[134] | Xiao WY, Chen C, Chen XL, Huang ZQ, Chen HYH (2020) Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Global Ecology and Biogeography, 29, 2261-2272. |
[135] | Yang GW, Ryo M, Roy J, Lammel DR, Ballhausen MB, Jing X, Zhu XF, Rillig MC (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications, 13, 4260. |
[136] | Yang GW, Wagg C, Veresoglou SD, Hempel S, Rillig MC (2018) How soil biota drive ecosystem stability. Trends in Plant Science, 23, 1057-1067. |
[137] | Yang T, Adams JM, Shi Y, He JS, Jing X, Chen LT, Tedersoo L, Chu HY (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215, 756-765. |
[138] | Zhang C, Lei SL, Wu HY, Liao LR, Wang XT, Zhang L, Liu GB, Wang GL, Fang LC, Song ZL (2024) Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biology and Biochemistry, 191, 109366. |
[139] | Zhang C, Wang J, Liu GB, Song ZL, Fang LC (2019) Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant and Soil, 439, 505-523. |
[140] | Zhang GL, Bai JH, Tebbe CC, Huang LB, Jia J, Wang W, Wang X, Yu L, Zhao QQ (2021) Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem. Science of the Total Environment, 758, 143667. |
[141] | Zhang ZJ, Liu YJ, Brunel C, van Kleunen M (2020) Evidence for Elton’s diversity-invasibility hypothesis from belowground. Ecology, 101, e03187. |
[142] | Zhou T, Liang GP, Reich PB, Delgado-Baquerizo M, Wang CK, Zhou ZH (2024) Promoting effect of plant diversity on soil microbial functionality is amplified over time. One Earth, 7, 2139-2148. |
[143] | Zhou ZH, Wang CK, Luo YQ (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. |
[1] | 张浩斌, 肖路, 刘艳杰. 夜间灯光对外来入侵植物和本地植物群落多样性和生长的影响[J]. 生物多样性, 2025, 33(4): 24553-. |
[2] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[3] | 万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财. 草地植物多样性无人机调查的应用潜力[J]. 生物多样性, 2024, 32(3): 23381-. |
[4] | 张乃鹏, 梁洪儒, 张焱, 孙超, 陈勇, 王路路, 夏江宝, 高芳磊. 土壤类型和地下水埋深对黄河三角洲典型盐沼植物群落空间分异的影响[J]. 生物多样性, 2024, 32(2): 23370-. |
[5] | 赵榕江, 吴纪华, 何维明, 赵彩云, 周波, 李博, 杨强. 土壤生物多样性与外来植物入侵: 进展与展望[J]. 生物多样性, 2024, 32(11): 24243-. |
[6] | 蒋陈焜, 郁文彬, 饶广远, 黎怀成, Julien B. Bachelier, Hartmut H. Hilger, Theodor C. H. Cole. 植物系统发生海报——以演化视角介绍植物多样性的科教资料项目[J]. 生物多样性, 2024, 32(11): 24210-. |
[7] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[8] | 韩赟, 迟晓峰, 余静雅, 丁旭洁, 陈世龙, 张发起. 青海野生维管植物名录[J]. 生物多样性, 2023, 31(9): 23280-. |
[9] | 陈又生, 宋柱秋, 卫然, 罗艳, 陈文俐, 杨福生, 高连明, 徐源, 张卓欣, 付鹏程, 向春雷, 王焕冲, 郝加琛, 孟世勇, 吴磊, 李波, 于胜祥, 张树仁, 何理, 郭信强, 王文广, 童毅华, 高乞, 费文群, 曾佑派, 白琳, 金梓超, 钟星杰, 张步云, 杜思怡. 西藏维管植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23188-. |
[10] | 宋柱秋, 叶文, 董仕勇, 金梓超, 钟星杰, 王震, 张步云, 徐晔春, 陈文俐, 李世晋, 姚纲, 徐洲锋, 廖帅, 童毅华, 曾佑派, 曾云保, 陈又生. 广东省高等植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23177-. |
[11] | 梁彩群, 陈玉凯, 杨小波, 张凯, 李东海, 江悦馨, 李婧涵, 王重阳, 张顺卫, 朱子丞. 海南省野生维管植物编目和分布数据集[J]. 生物多样性, 2023, 31(6): 23067-. |
[12] | 李仕裕, 张奕奇, 邹璞, 宁祖林, 廖景平. 广东省植物园植物多样性迁地保护现状及发展建议[J]. 生物多样性, 2023, 31(6): 22647-. |
[13] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[14] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[15] | 肖翠, 刘冰, 吴超然, 马金双, 叶建飞, 夏晓飞, 林秦文. 北京维管植物编目和分布数据集[J]. 生物多样性, 2022, 30(6): 22064-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn