生物多样性 ›› 2023, Vol. 31 ›› Issue (6): 22636. DOI: 10.17520/biods.2022636
朱晓华1,2, 高程2,3, 王聪2,*(), 赵鹏1,*()
收稿日期:
2022-11-12
接受日期:
2023-02-21
出版日期:
2023-06-20
发布日期:
2023-04-18
通讯作者:
* E-mail: zhaop529@hotmail.com;wangc@im.ac.cn
基金资助:
Xiaohua Zhu1,2, Cheng Gao2,3, Cong Wang2,*(), Peng Zhao1,*()
Received:
2022-11-12
Accepted:
2023-02-21
Online:
2023-06-20
Published:
2023-04-18
Contact:
* E-mail: zhaop529@hotmail.com;wangc@im.ac.cn
摘要:
土壤微生物组在养分循环和土壤生态系统功能的维持中具有至关重要的作用。氮素是植物生长过程中关键的限制性营养元素, 而大气中的非活性氮却无法被植物直接吸收利用。我国农业主要通过施加尿素补充土壤氮素营养, 提升作物产量。细菌和真菌是土壤微生物组的重要类群, 土壤细菌与真菌群落结构对尿素添加的响应近年来备受重视并被深入研究, 本文综述了施用尿素对土壤细菌与真菌多样性的影响及其机理的研究进展。大量研究表明, 施用尿素通过影响土壤和植物调节土壤细菌与真菌多样性和组成; 施用尿素降低农田(除水稻田、水稻-小麦田)土壤细菌多样性的阈值为200 kg N·ha-1·yr-1, 小麦田土壤真菌多样性降低的阈值低于细菌多样性阈值, 水稻田或水稻-小麦轮作田土壤细菌多样性对尿素响应的阈值要高于其他农田类型; 施用尿素增加富营养类群细菌, 减少寡营养细菌类群, 增加腐生真菌与病原真菌的相对多度, 降低菌根真菌的相对多度。展望土壤微生物组的进一步研究, 强调未来研究要多关注土壤中食物网的重要性, 并指出设计平行引物及利用多组学方法研究土壤微生物是未来研究的重点之一。
朱晓华, 高程, 王聪, 赵鹏 (2023) 尿素对土壤细菌与真菌多样性影响的研究进展. 生物多样性, 31, 22636. DOI: 10.17520/biods.2022636.
Xiaohua Zhu, Cheng Gao, Cong Wang, Peng Zhao (2023) Research progress on the effect of urea on bacterial and fungal diversity in soil. Biodiversity Science, 31, 22636. DOI: 10.17520/biods.2022636.
图1 不同施肥量、施肥年限以及作物类型对土壤微生物组多样性与组成影响。数据源自Ahn等(2012)、Yuan等(2013)、Qiu等(2014)、Zhao等(2014)、Luo等(2015)、Paungfoo-Lonhienne等(2015)、Zhong等(2015)、Zhou等(2015)、Chen等(2016)、Eo和Park (2016)、Wang等(2017)、Cui等(2018)、Huang等(2019)、Liang等(2020)、Ullah等(2019)、Ullah等(2020)、Ye等(2020)、Castle等(2021)、Wang和Huang (2021)、Yao等(2021)。
Fig. 1 Effects of fertilizer amount, fertilization age, and crop type on soil microbiome diversity and composition. Data derived from Ahn et al (2012), Yuan et al (2013), Qiu et al (2014), Zhao et al (2014), Luo et al (2015), Paungfoo-Lonhienne et al (2015), Zhong et al (2015), Zhou et al (2015), Chen et al (2016), Eo & Park (2016), Wang et al (2017), Cui et al (2018), Huang et al (2019), Liang et al (2020), Ullah et al (2019), Ullah et al (2020), Ye et al (2020), Castle et al (2021), Wang & Huang (2021), and Yao et al (2021).
图2 施用尿素改变土壤微生物组多样性与组成的作用机制。数据源自Meier和Bowman (2008)、Lucas等(2011)、Yoneyama等(2013)、Jian等(2016)、Nguyen等(2016)、Delgado-Baquerizo等(2017)、Cui等(2018)、Wang JC等(2018)、Yu等(2019)、Huang等(2021)、Sun等(2021)、Yao等(2021)、Babalola等(2022)。
Fig. 2 Mechanisms of effects of urea application on soil microbiome diversity and structure. Data derived from Meier & Bowman (2008), Lucas et al (2011), Yoneyama et al (2013), Jian et al (2016), Nguyen et al (2016), Delgado-Baquerizo et al (2017), Cui et al (2018), Wang JC et al (2018), Yu et al (2019), Huang et al (2021), Sun et al (2021), Yao et al (2021), and Babalola et al (2022).
[1] |
Ahn JH, Song J, Kim BY, Kim MS, Joa JH, Weon HY (2012) Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. Journal of Microbiology, 50, 754-765.
DOI URL |
[2] |
Babalola BJ, Li J, Willing CE, Zheng Y, Wang YL, Gan HY, Li XC, Wang C, Adams CA, Gao C, Guo LD (2022) Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. New Phytologist, 234, 2057-2072.
DOI PMID |
[3] |
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
DOI PMID |
[4] |
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen XYL, Cocolin L, Eversole K, Corral GH, Kazou M, Knkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Muchine T, Ryan M, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, de Souza RSC, Overbeek LA, Schloter M (2020) Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 8, 103.
DOI PMID |
[5] |
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13.
DOI PMID |
[6] |
Castle SC, Samac DA, Gutknecht JL, Sadowsky MJ, Rosen CJ, Schlatter D, Kinkel LL (2021) Impacts of cover crops and nitrogen fertilization on agricultural soil fungal and bacterial communities. Plant and Soil, 466, 139-150.
DOI |
[7] |
Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, Philippot L, Hallin S (2014) Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology, 84, 62-68.
DOI URL |
[8] |
Chen C, Zhang JN, Lu M, Qin C, Chen YH, Yang L, Huang QW, Wang JC, Shen ZG, Shen QR (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils, 52, 455-467.
DOI URL |
[9] |
Chen H, Li DJ, Zhao J, Xiao KC, Wang KL (2018) Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agriculture Ecosystems & Environment, 252, 126-131.
DOI URL |
[10] |
Chen QL, Cui HL, Su JQ, Penuelas J, Zhu YG (2019) Antibiotic resistomes in plant microbiomes. Trends in Plant Science, 24, 530-541.
DOI URL |
[11] |
Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG (2020) Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 141, 107686.
DOI URL |
[12] |
Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biology Open, 1, 52-57.
DOI PMID |
[13] |
Cui XW, Zhang YZ, Gao JS, Peng FY, Gao P (2018) Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports, 8, 16554.
DOI PMID |
[14] |
Dai ZM, Su WQ, Chen HH, Barberán A, Zhao HC, Yu MJ, Yu L, Brookes PC, Schadt CW, Chang SX, Xu JM (2018) Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 24, 3452-3461.
DOI PMID |
[15] |
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK (2021) The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229, 2446-2469.
DOI PMID |
[16] |
Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, Abu Al-Soud W, Sørensen S, Bardgett RD, Singh BK (2017) It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188.
DOI PMID |
[17] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[18] |
Eo J, Park KC (2016) Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture Ecosystems & Environment, 231, 176-182.
DOI URL |
[19] |
Fontaine S, Hénault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 43, 86-96.
DOI URL |
[20] |
Gao C, Courty PE, Varoquaux N, Cole B, Montoya L, Xu L, Purdom E, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2022) Successional adaptive strategies revealed by correlating arbuscular mycorrhizal fungal abundance with host plant gene expression. Molecular Ecology, 32, 2674-2687.
DOI PMID |
[21] | Gao XJ, Li GH, Lu WP, Lu DL (2022) Effects of mixing controlled-release and normal urea on yield, nitrogen absorption and utilization in waxy maize. Journal of Plant Nutrition and Fertilizers, 28, 1614-1625. (in Chinese with English abstract) |
[高雪健, 李广浩, 陆卫平, 陆大雷 (2022) 控释尿素与普通尿素配施对糯玉米产量和氮素吸收利用的影响. 植物营养与肥料学报, 28, 1614-1625.] | |
[22] |
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293-323.
DOI PMID |
[23] |
Hanson CA, Allison SD, Bradford MA, Wallenstein MD, Treseder KK (2008) Fungal taxa target different carbon sources in forest soil. Ecosystems, 11, 1157-1167.
DOI URL |
[24] |
Hong SH, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. The ISME Journal, 3, 1365-1373.
DOI |
[25] |
Huang Q, Wang JL, Wang C, Wang Q (2019) The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil. Applied Soil Ecology, 144, 60-67.
DOI URL |
[26] |
Huang YP, Wang QQ, Zhang WJ, Zhu P, Xiao Q, Wang CJ, Wu L, Tian YF, Xu MG, Gunina A (2021) Stoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization. Applied Soil Ecology, 168, 104119.
DOI URL |
[27] |
Jian SY, Li JW, Chen J, Wang GS, Mayes MA, Dzantor KE, Hui DF, Luo YQ (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 101, 32-43.
DOI URL |
[28] | Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Blüthgen N (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature, 542, 223-227. |
[29] |
Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: Paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18, 1185-1193.
DOI URL |
[30] |
Lal R (2011) Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, S33-S39.
DOI URL |
[31] |
Li HD, Wu XW, Xiao ZS (2021) Assembly, ecosystem functions, and stability in species interaction networks. Chinese Journal of Plant Ecology, 45, 1049-1063. (in Chinese with English abstract)
DOI URL |
[李海东, 吴新卫, 肖治术 (2021) 种间互作网络的结构、生态系统功能及稳定性机制研究. 植物生态学报, 45, 1049-1063.]
DOI |
|
[32] | Li YZ, Zhang JZ, Jia JY, Fan F, Zhang FS, Zhang JL (2022) Research progresses on farmland soil ecosystem multifunctionality. Acta Pedologica Sinica, 59, 1177-1189. (in Chinese with English abstract) |
[李奕赞, 张江周, 贾吉玉, 樊帆, 张福锁, 张俊伶 (2022) 农田土壤生态系统多功能性研究进展. 土壤学报, 59, 1177-1189.] | |
[33] |
Liang RB, Hou RX, Li J, Lyu Y, Hang S, Gong HR, Ouyang Z (2020) Effects of different fertilizers on rhizosphere bacterial communities of winter wheat in the North China plain. Agronomy, 10, 93.
DOI URL |
[34] | Liao LR, Wang XT, Wang J, Liu GB, Zhang C (2021) Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil, 465, 515-532. |
[35] |
Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science & Technology, 46, 5764-5771.
DOI URL |
[36] |
Liu HW, Li JY, Carvalhais LC, Percy CD, Verma JP, Schenk PM, Singh BK (2021) Evidence for the plant recruitment of beneficial microbes to suppress soil‐borne pathogens. New Phytologist, 229, 2873-2885.
DOI URL |
[37] |
Liu JL, Li SQ, Yue SC, Tian JQ, Chen H, Jiang HB, Siddique KHM, Zhan A, Fang QX, Yu Q (2021) Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma, 396, 115086.
DOI URL |
[38] | Lu XK, Mo JM, Zhang W, Mao QG, Liu RZ, Wang C, Wang SH, Zheng MH, Taiki M, Mao JH, Zhang YQ, Wang YF, Huang J (2019) Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 27, 500-522. (in Chinese with English abstract) |
[鲁显楷, 莫江明, 张炜, 毛庆功, 刘荣臻, 王聪, 王森浩, 郑棉海, MORI Taiki, 毛晋花, 张勇群, 王玉芳, 黄娟 (2019) 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 27, 500-522.] | |
[39] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P (2011) A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[40] |
Luo PY, Han XR, Wang Y, Han M, Shi H, Liu N, Bai HZ (2015) Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Annals of Microbiology, 65, 533-542.
PMID |
[41] |
Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: A proposal. Microbiome, 3, 31.
DOI PMID |
[42] |
McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN (2014) Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biology and Biochemistry, 78, 243-254.
DOI URL |
[43] | Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences, USA, 105, 19780-19785. |
[44] |
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[45] |
Paungfoo-Lonhienne C, Yeoh YK, Kasinadhuni NRP, Lonhienne TGA, Robinson N, Hugenholtz P, Ragan MA, Schmidt S (2015) Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 5, 8678.
DOI PMID |
[46] |
Qiu SL, Wang LM, Huang DF, Lin XJ (2014) Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity. Chilean Journal of Agricultural Research, 74, 333-339.
DOI URL |
[47] |
Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18, 1918-1927.
DOI URL |
[48] | Rojas R, Morillo J, Usero J, Delgado-Moreno L, Gan J (2013) Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Science of the Total Environment, 458-460, 614-623. |
[49] |
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010a) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351.
DOI |
[50] |
Rousk J, Brookes PC, Baath E (2010b) Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 42, 926-934.
DOI URL |
[51] |
Santos SS, Rask KA, Vestergård M, Johansen JL, Priemé A, Frøslev TG, González AMM, He H, Ekelund F (2021) Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environmental and Experimental Botany, 186, 104430.
DOI URL |
[52] | Singh RK, Redoña E, Refuerzo L (2010) Varietal improvement for abiotic stress tolerance in crop plants:Special reference to salinity in rice. In: Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation (eds Pareek A, Sopory SK, Bohnert HJ, Govindjee), pp. 387-415. Springer, Dordrecht. |
[53] |
Song B, Li Y, Yang LY, Shi HQ, Li LH, Bai WM, Zhao Y (2023) Soil acidification under long-term N addition decreases the diversity of soil bacteria and fungi and changes their community composition in a semiarid grassland. Microbial Ecology, 85, 221-231.
DOI |
[54] |
Sterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist, 207, 1145-1158.
DOI PMID |
[55] |
Sun AQ, Jiao XY, Chen QL, Trivedi P, Li ZX, Li FF, Zheng Y, Lin YX, Hu HW, He JZ (2021) Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environmental Microbiology, 23, 2169-2183.
DOI PMID |
[56] |
Tian W, Wang L, Li Y, Zhuang KM, Li G, Zhang JB, Xiao XJ, Xi YG (2015) Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture Ecosystems & Environment, 213, 219-227.
DOI URL |
[57] |
Ullah S, Ai C, Ding WC, Jiang R, Zhao SC, Zhang JJ, Zhou W, Hou YP, He P (2019) The response of soil fungal diversity and community composition to long-term fertilization. Applied Soil Ecology, 140, 35-41.
DOI |
[58] |
Ullah S, He P, Ai C, Zhao SC, Ding WC, Song DL, Zhang JJ, Huang SH, Abbas T, Zhou W (2020) How do soil bacterial diversity and community composition respond under recommended and conventional nitrogen fertilization regimes? Microorganisms, 8, 1193.
DOI URL |
[59] |
Valencia E, Gross N, Quero JL, Carmona CP, Ochoa V, Gozalo B, Delgado-Baquerizo M, Dumack K, Hamonts K, Singh BK, Bonkowski M, Maestre FT (2018) Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 24, 5642-5654.
DOI PMID |
[60] | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[61] |
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.
DOI PMID |
[62] | Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2016) Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 1, e00009-15. |
[63] |
Wang C, Lu XK, Mori T, Mao QG, Zhou KJ, Zhou GY, Nie YX, Mo JM (2018) Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology and Biochemistry, 121, 103-112.
DOI URL |
[64] |
Wang JC, Rhodes G, Huang QW, Shen QR (2018) Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system. Biology and Fertility of Soils, 54, 731-742.
DOI |
[65] |
Wang JC, Song Y, Ma TF, Raza W, Li J, Howland JG, Huang QW, Shen QR (2017) Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112, 42-50.
DOI URL |
[66] |
Wang LM, Huang DF (2021) Soil microbial community composition in a paddy field with different fertilization managements. Canadian Journal of Microbiology, 67, 864-874.
DOI URL |
[67] |
Wei CZ, Yu Q, Bai E, Lü XT, Li Q, Xia JY, Kardol P, Liang WJ, Wang ZW, Han XG (2013) Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19, 3688-3697.
DOI PMID |
[68] |
Wright SHA, Berch SM, Berbee ML (2009) The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla). Mycorrhiza, 19, 267-276.
DOI PMID |
[69] |
Wu MN, Qin HL, Chen Z, Wu JS, Wei WX (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biology and Fertility of Soils, 47, 397-405.
DOI URL |
[70] | Wu XJ, Rensing C, Han DF, Xiao KQ, Dai YX, Tang ZX, Liesack W, Peng JJ, Cui ZL, Zhang FS (2022) Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems, 7, e0110721. |
[71] |
Xiao D, Huang Y, Feng SZ, Ge YH, Zhang W, He XY, Wang KL (2018) Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient. Geoderma, 321, 79-89.
DOI URL |
[72] |
Xiong JB, Chu HY, Sun HB, Xue X, Peng F, Zhang HY (2014) Divergent responses of soil fungi functional groups to short-term warming. Microbial Ecology, 68, 708-715.
DOI PMID |
[73] |
Xu AX, Li LL, Coulter JA, Xie JH, Gopalakrishnan S, Zhang RZ, Luo ZZ, Cai LQ, Liu C, Wang LL, Khan S (2020) Long-term nitrogen fertilization impacts on soil bacteria, grain yield and nitrogen use efficiency of wheat in semiarid loess plateau, China. Agronomy, 10, 1175.
DOI URL |
[74] |
Yao RJ, Yang JS, Wang XP, Xie WP, Zheng FL, Li HQ, Tang C, Zhu H (2021) Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degradation & Development, 32, 338-353.
DOI URL |
[75] |
Ye GP, Lin YX, Luo JF, Di HJ, Lindsey S, Liu DY, Fan JB, Ding WX (2020) Responses of soil fungal diversity and community composition to long-term fertilization: Field experiment in an acidic Ultisol and literature synthesis. Applied Soil Ecology, 145, 103305.
DOI URL |
[76] |
Yoneyama K, Xie XN, Kisugi T, Nomura T, Yoneyama K (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta, 238, 885-894.
DOI PMID |
[77] |
Yu ZH, Hu XJ, Wei D, Liu JJ, Zhou BK, Jin J, Liu XB, Wang GH (2019) Long-term inorganic fertilizer use influences bacterial communities in Mollisols of Northeast China based on high-throughput sequencing and network analyses. Archives of Agronomy and Soil Science, 65, 1331-1340.
DOI URL |
[78] |
Yuan HZ, Ge TD, Zhou P, Liu SL, Roberts P, Zhu HH, Zou ZY, Tong CL, Wu JS (2013) Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. Journal of Soils and Sediments, 13, 877-886.
DOI URL |
[79] |
Zhang KL, Maltais-Landry G, Liao HL (2021) How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 156, 108219.
DOI URL |
[80] |
Zhang LY, Zhang ML, Huang SY, Li LJ, Gao Q, Wang Y, Zhang SQ, Huang SM, Yuan L, Wen YC, Liu KL, Yu XC, Li DC, Zhang L, Xu XP, Wei HL, He P, Zhou W, Philippot L, Ai C (2022) A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 13, 3361.
DOI PMID |
[81] |
Zhang SG, Yang YC, Gao B, Wan YS, Li YC, Zhao CH (2016) Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. Journal of Agricultural and Food Chemistry, 64, 5692-5700.
DOI PMID |
[82] |
Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen QR, Zhang RF (2014) Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE, 9, e85301.
DOI URL |
[83] |
Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang LM (2019) Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 7, 33.
DOI |
[84] |
Zhong YQW, Yan WM, Shuangguan ZP (2015) Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biology and Biochemistry, 91, 151-159.
DOI URL |
[85] |
Zhou J, Guan DW, Zhou BK, Zhao BS, Ma MC, Qin J, Jiang X, Chen SF, Cao FM, Shen DL, Li J (2015) Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry, 90, 42-51.
DOI URL |
[86] | Zhu YG, Peng JJ, Wei Z, Shen QR, Zhang FS (2021) Linking the soil microbiome to soil health. Scientia Sinica: Vitae, 51, 1-11. (in Chinese with English abstract) |
[朱永官, 彭静静, 韦中, 沈其荣, 张福锁 (2021) 土壤微生物组与土壤健康. 中国科学: 生命科学, 51, 1-11.] | |
[87] | Zou QF, Gu XB, Li SN, Chen PP, Cao JH (2020) Effect of slow-release nitrogen fertilizer application ratio on yield and nitrogen fertilizer utilization efficiency of winter wheat. Journal of Water Resources and Water Engineering, 33, 217-224. (in Chinese with English abstract) |
[邹奇芳, 谷晓博, 李授农, 陈鹏鹏, 曹俊豪 (2020) 缓释氮肥施用比例对冬小麦产量及氮肥利用效率的影响. 水资源与水工程学报, 33, 217-224.] |
[1] | 张旋, 徐颖, 杨颜慈, 赵艳玲, 门中华, 王永龙. 孑遗植物半日花叶际真菌群落的多样性与构建机制[J]. 生物多样性, 2024, 32(3): 23384-. |
[2] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[3] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[4] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[5] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[6] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[7] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[8] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[9] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[10] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[11] | 吴春玲, 罗竹慧, 李意德, 许涵, 陈德祥, 丁琼. 热带山地雨林木本豆科和樟科植物叶内生细菌群落: 物种与功能群多样性及驱动因子[J]. 生物多样性, 2023, 31(8): 23146-. |
[12] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[13] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[14] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[15] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn