生物多样性 ›› 2012, Vol. 20 ›› Issue (3): 280-285. DOI: 10.3724/SP.J.1003.2012.06040
所属专题: 传粉生物学:理论探讨与初步实践; 传粉生物学
收稿日期:
2012-01-30
接受日期:
2012-04-10
出版日期:
2012-05-20
发布日期:
2012-05-09
通讯作者:
唐璐璐
作者简介:
*E-mail: lltang@csu.edu.cn基金资助:
Received:
2012-01-30
Accepted:
2012-04-10
Online:
2012-05-20
Published:
2012-05-09
Contact:
Lulu Tang
摘要:
花对称性(floral symmetry)是被子植物花部结构的典型特性之一, 主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称, 而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新, 被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段, 随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明, 在传粉过程的不同阶段, 花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花, 两侧对称的花提高了特异性传粉者的选择作用, 增加了花粉落置的精确性, 进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明, CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源, 与其他花部构成之间是否协同作用, 一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。
李交昆, 唐璐璐 (2012) 花对称性的研究进展. 生物多样性, 20, 280-285. DOI: 10.3724/SP.J.1003.2012.06040.
Jiaokun Li, Lulu Tang (2012) Progress in the study of floral symmetry. Biodiversity Science, 20, 280-285. DOI: 10.3724/SP.J.1003.2012.06040.
[1] |
Almeida J, Rocheta M, Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Development, 124, 1387-1392.
URL PMID |
[2] | Anderson WR (1979) Floral conservatism in neotropical Malpighiaceae. Biotropica, 11, 219-223. |
[3] |
Busch A, Zachgo S (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences, USA, 104, 16714-16719.
DOI URL |
[4] | Citerne H, Jabbour F, Nadot S, Damerval C (2010) The evolution of floral symmetry. Advances in Botanical Research, 54, 85-137. |
[5] | Coen E, Nugent JM, Luo D, Bradley D, Cubas P, Chadwick M, Copsey L, Carpenter R (1995) Evolution of floral symmetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 350, 35-38. |
[6] | Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature, 374, 27-33. |
[7] |
Cubas P, Lauter N, Doebley J, Coen E (1999a) The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18, 215-222.
DOI URL PMID |
[8] |
Cubas P, Vincent C, Coen E (1999b) An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401, 157-161.
URL PMID |
[9] | Darwin C (1877) The Different Forms of Flowers on Plants of the Same Species. John Murray, London. |
[10] |
Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature, 386, 485-488.
URL PMID |
[11] | Douglas AW (1997) The developmental basis of morphological diversification and synorganization in flowers of Conospermeae (Stirlingia and Conosperminae, Proteaceae). International Journal of Plant Sciences, 158, S13-S48. |
[12] |
Douglas AW, Tucker SC (1996) Comparative floral ontogenies among Persoonioideae including Bellendena (Proeaceae). American Journal of Botany, 83, 1528-1555.
DOI URL |
[13] |
Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with morphological data. International Journal of Plant Sciences, 161, S121-S153.
DOI URL |
[14] | Endress PK (1999) Symmetry in flowers: diversity and evolution. International Journal of Plant Science, 160, S3-S23. |
[15] |
Endress PK (2001) Evolution of floral symmetry. Current Opinion in Plant Biology, 4, 86-91.
URL PMID |
[16] |
Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany, 96, 22-66.
DOI URL PMID |
[17] | Faegria K, van der Pijl L(1979) The Principle of Pollination Ecology. Pergamon Press, Oxford. |
[18] | Feng X, Zhao Z, Tian Z, Xu SL, Luo YH, Cai ZG, Wang YM, Yang J, Wang Z, Weng L, Chen JH, Zheng LY, Guo XZ, Luo JH, Sato S, Tabata S, Ma W, Cao XL, Hu XH, Sun CR, Luo D (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences, USA, 103, 4970-4975. |
[19] | Fenster CB, Armbruster WS, Wilson P, Dudash MR (2009) Specialization of flowers: is floral orientation and overlooked first step? New Phytologist, 183, 502-506. |
[20] | Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403. |
[21] | Frey FM, Davis R, Delph LF (2005) Manipulation of floral symmetry does not affect seed production in Impatiens pallida. International Journal of Plant Science, 166, 659-662. |
[22] |
Friedman WE (2009) The meaning of Darwin’s “abominable mystery”. American Journal of Botany, 96, 5-21.
URL PMID |
[23] |
Galego L, Almeida J (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes and Development, 16, 880-891.
URL PMID |
[24] |
Gómez JM, Perfectti F, Camacho JPM (2006) Natural selectin on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. The American Naturalist, 168, 531-545.
DOI URL PMID |
[25] |
Gong YB, Huang SQ (2009) Floral symmetry: pollinator- mediated stabilizing selection on flower size in bilateral species. Proceedings of the Royal Society B: Biological Sciences, 276, 4013-4020.
URL PMID |
[26] |
Gong YB, Huang SQ (2011) Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia, 166, 671-680.
URL PMID |
[27] |
Grant V (1949) Pollination systems as isolating mechanisms in angiosperms. Evolution, 3, 82-97.
DOI URL PMID |
[28] | Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86, 373-406. |
[29] |
Herrera J (2009) Visiblility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants. Annals of Botany, 103, 1119-1127.
URL PMID |
[30] |
Herrera J, Arista M, Ortiz PL (2008) Perianth organization and intra-specific floral variability. Plant Biology, 10, 704-710.
URL PMID |
[31] |
Hileman LC, Baum DA (2003) Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution, 20, 591-600.
DOI URL PMID |
[32] | Hu SS, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences, USA, 105, 240-245. |
[33] |
Jabbour F, Damerva C, Nadot S (2008) Evolutionary trends in the flowers of Asteridae: Is polyandry an alternative to zygomorphy? Annals of Botany, 102, 153-165.
DOI URL PMID |
[34] |
Jabbour F, De Craene LPRD, Nadot S, Damerval C (2009) Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Annals of Botany, 104, 809-822.
URL PMID |
[35] |
Kalisz S, Ree RH, Sargent RD (2006) Linking floral symmetry genes to breeding system evolution. Trends in Plant Science, 11, 568-573.
URL PMID |
[36] | Kellogg EA (2000) The grasses: a case study in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 31, 217-238. |
[37] | van Kleunen M, MeierA, Saxenhofer M, Fischer M (2008) Support for the predictions of the pollinator-mediated stabilizing selection hypothesis. Journal of Plant Ecology, 1, 173-178. |
[38] |
Luo D, Carpenter R, Copscy L, Vincent C, Clark J, Coen ES (1999) Control of organ asymmetry in flowers of Antirrhimum. Cell, 99, 367-376.
DOI URL PMID |
[39] |
Luo D, Carpenter R, Vincent C, Copscy L, Coen ES (1996) Origin of floral asymmetry in Antirrhimum. Nature, 383, 794-799.
DOI URL PMID |
[40] |
Mitchell CH, Diggle PK (2005) The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. American Journal of Botany, 92, 1068-1076.
URL PMID |
[41] |
Neal PR, Anderson GJ (2005) Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? Or it is the other way around? Plant Systematics and Evolution, 250, 173-185.
DOI URL |
[42] | Neal PR, Dafni A, Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annual Review of Ecology and Systematics, 29, 345-373. |
[43] | Ollerton J, Watts S (2000) Phenotype sapace and floral typology: towards an objective assessment of pollination syndromes. Nor Vidensk-Akad Mat Naturvidensk Klas Skr Ny Ser, 39, 149-159. |
[44] | van der Pijl L (1972) Functional considerations and observations on the flowers of some Labiatae. Blumea, 20, 93-103. |
[45] | Preston JC, Kost MA, Hileman LC (2009) Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist, 182, 751-762. |
[46] |
Rodríiguez I, Gumbert A, de Ibarra NH, Kunze J, Giurfa M (2004) Symmetry is in the eye of the “beeholder”: innate preference for bilateral symmetry in flower-native bumblebees. Naturwissenschaften, 91, 374-377.
DOI URL PMID |
[47] | Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist, 162, 25-44. |
[48] |
Sargent RD (2004) Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 271, 603-608.
DOI URL PMID |
[49] |
Schmidt RJ, Ambrose BA (1998) The blooming of grass flower development. Current Opinion in Plant Biology, 1, 60-67.
DOI URL PMID |
[50] | Song CF, Lin QB, Liang RH, Wang YZ (2009) Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evolution Biology, 9, 244. |
[51] |
Ushimaru A, Dohzono I, Takami Y, Hyodo F (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia, 160, 667-674.
DOI URL PMID |
[52] | Ushimaru A, Hyodo F (2005) Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research, 7, 151-160. |
[53] | Vincent CA, Coen ES (2004) A temporal and morphological framework for flower development in Antirrhinum majus. Canadian Journal of Botany, 82, 681-690. |
[54] | Wang HC, Meng AP, Li JQ, Feng M, Chen ZD, Wang W (2006) Floral organogenesis of Cocculus orbiculatus and Stephania dielsiana (Menispermaceae). International Journal of Plant Sciences, 167, 951-960. |
[55] | Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng XZ, Hu XH, Luo D (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences, USA, 105, 10414-10419. |
[56] |
Wolfe LM, Krstolic JL (1999) Floral symmetry and its influence on variance in flower size. The American Naturalist, 154, 484-488.
DOI URL PMID |
[57] | Zhang WH, Kramer EM, Davis CC (2010) Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences, USA, 107, 6388-6393. |
[58] | Zhou XR, Wang YZ, Smith JF, Chen R (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist, 178, 532-543. |
[1] | 李巧峡, 李有龙, 李纪纲, 陈晨龙, 孙坤. 光周期调控维西堇菜与裂叶堇菜开放花和闭锁花的发育[J]. 生物多样性, 2024, 32(6): 23484-. |
[2] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[3] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[4] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[5] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[6] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[7] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[8] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[9] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[10] | 李治中, 彭帅, 王青锋, 李伟, 梁士楚, 陈进明. 中国海菜花属植物隐种多样性[J]. 生物多样性, 2023, 31(2): 22394-. |
[11] | 宋会银, 胡征宇, 刘国祥. 绿藻门小球藻科的分类学研究进展[J]. 生物多样性, 2023, 31(2): 22083-. |
[12] | 俄广旭, 白天天, 朱振宇, 郭雪峰. 动物消化道微生物多样性与宿主协同进化关系的研究进展[J]. 生物多样性, 2023, 31(11): 23214-. |
[13] | 戚海迪, 张定海, 单立山, 陈国鹏, 张勃. 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展[J]. 生物多样性, 2023, 31(11): 23273-. |
[14] | 罗韶凡, 蒋凯, 黄卫昌. 植物花距表型趋同进化和发育机制多样化的研究进展[J]. 生物多样性, 2023, 31(11): 23249-. |
[15] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn