生物多样性 ›› 2023, Vol. 31 ›› Issue (3): 22436. DOI: 10.17520/biods.2022436
所属专题: 生物入侵
沈诗韵1, 潘远飞1, 陈丽茹1, 土艳丽4, 潘晓云1,2,3,*()
收稿日期:
2022-07-30
接受日期:
2022-09-27
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
潘晓云
作者简介:
* E-mail: xypan@fudan.edu.cn基金资助:
Shiyun Shen1, Yuanfei Pan1, Liru Chen1, Yanli Tu4, Xiaoyun Pan1,2,3,*()
Received:
2022-07-30
Accepted:
2022-09-27
Online:
2023-03-20
Published:
2022-12-30
Contact:
Xiaoyun Pan
摘要:
植物-土壤反馈是植物通过生长改变根际土壤环境, 从而影响后续植物生长发育的生态学过程。入侵植物从原产地扩散到入侵地后, 可能会经历植物本身的适应性进化而对土壤环境产生不同影响, 从而使负向植物-土壤反馈降低, 甚至转为正反馈。以往对入侵植物的植物-土壤反馈研究多集中于比较其与本地种、其他入侵种之间的差异, 而较少关注入侵植物的入侵地种群和原产地种群在入侵地的差异。本研究采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)入侵地(中国)和原产地(阿根廷)种群是否存在对入侵地土壤的植物-土壤反馈差异以及如何通过土壤微生物群落来影响反馈结果。结果表明: (1)喜旱莲子草入侵地种群的反馈表现为正, 原产地种群表现为中性。(2)入侵地种群显著增加了土壤的细菌和真菌群落多样性, 原产地种群与对照土壤无显著差异。这些结果表明, 喜旱莲子草入侵地种群在扩散过程中, 对土壤微生物群落的调节作用发生了改变, 从而产生正向的植物-土壤反馈效应。
沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云 (2023) 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异. 生物多样性, 31, 22436. DOI: 10.17520/biods.2022436.
Shiyun Shen, Yuanfei Pan, Liru Chen, Yanli Tu, Xiaoyun Pan (2023) Plant-soil feedbacks differ between native and introduced populations of Alternanthera philoxeroides. Biodiversity Science, 31, 22436. DOI: 10.17520/biods.2022436.
图1 本研究的实验设置图解。Soil-N: 原产地驯化土壤; Soil-I: 入侵地驯化土壤; Soil-C: 空白对照土壤。
Fig. 1 The diagram of experiment design. Soil-N, Soil conditioned by native populations; Soil-I, Soil conditioned by introduced populations; Soil-C, Controlled soil.
图2 喜旱莲子草入侵地(中国)和原产地(阿根廷)种群植物-土壤反馈系数(PSF)的差异。(a)总生物量; (b)地上生物量; (c)地下生物量; (d)贮藏根生物量。误差棒代表95%的置信区间, P值表示入侵地和原产地种群间植物-土壤反馈系数的差异。?表示系数均值与零边缘显著, *表示系数均值与零显著。
Fig. 2 Differences of plant-soil feedbacks (PSF) between introduced (China) and native (Argentina) populations of Alternanthera philoxeroides. (a) Total biomass; (b) Aboveground biomass; (c) Underground biomass; (d) Storage root biomass PSF. Error bars indicate 95% confidence intervals; P values indicate the differences between introduced and native populations. ? indicates marginally significant differences between mean and zero and * indicates significant differences between mean and zero.
图3 喜旱莲子草入侵地(中国)和原产地(阿根廷)种群对根际土壤微生物α多样性系数(Y)的影响。(a)细菌丰富度; (b)细菌Shannon指数; (c)真菌丰富度; (d)真菌Shannon指数。误差棒代表95%置信区间, P值表示入侵地和原产地种群间根际土壤微生物α多样性系数差异, ***表示系数均值与零极其显著。
Fig. 3 Effects of introduced (China) and native (Argentina) populations on diversity of rhizosphere soil microorganisms of Alternanthera philoxeroides. (a) Bacterial richness; (b) Bacterial Shannon index; (c) Fungal richness; (d) Fungal Shannon index. Error bars indicate 95% confidence intervals, P values indicate the differences between introduced and native populations and *** indicate extremely significant differences between mean and zero.
[1] |
Allen WJ, Sapsford SJ, Dickie IA (2021) Soil sample pooling generates no consistent inference bias: A meta-analysis of 71 plant-soil feedback experiments. New Phytologist, 231, 1308-1315.
DOI PMID |
[2] | Anthony MA, Frey SD, Stinson KA (2017) Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 8, e01951. |
[3] |
Bennett AE, Thomsen M, Strauss SY (2011) Multiple mechanisms enable invasive species to suppress native species. American Journal of Botany, 98, 1086-1094.
DOI PMID |
[4] |
Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: The utility of the feedback approach. Journal of Ecology, 85, 561-573.
DOI URL |
[5] | Burgin S, Norris A (2008) Alligator weed (Alternanthera philoxeroides) in New South Wales, Australia: A status report. Weed Biology and Management, 8, 284-290. |
[6] |
Callaway RM, Ridenour WM (2004) Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443.
DOI URL |
[7] |
Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528-534.
DOI URL |
[8] |
Day NJ, Dunfield KE, Antunes PM (2015) Temporal dynamics of plant-soil feedback and root-associated fungal communities over 100 years of invasion by a non-native plant. Journal of Ecology, 103, 1557-1569.
DOI URL |
[9] |
Dostálek T, Münzbergová Z, Kladivová A, Macel M (2016) Plant-soil feedback in native vs. invasive populations of a range expanding plant. Plant and Soil, 399, 209-220.
DOI URL |
[10] |
Fahey C, Flory SL (2021) Soil microbes alter competition between native and invasive plants. Journal of Ecology, 110, 404-414.
DOI URL |
[11] | Julien MH, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. Journal of Aquatic Plant Management, 33, 55-60. |
[12] |
Klinerová T, Dostál P (2020) Nutrient-demanding species face less negative competition and plant-soil feedback effects in a nutrient-rich environment. New Phytologist, 225, 1343-1354.
DOI PMID |
[13] |
Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.
DOI |
[14] |
Kumschick S, Hufbauer RA, Alba C, Blumenthal DM (2013) Evolution of fast-growing and more resistant phenotypes in introduced common mullein (Verbascum thapsus). Journal of Ecology, 101, 378-387.
DOI URL |
[15] |
Lozano YM, Aguilar-Trigueros CA, Ospina JM, Rillig MC (2022) Drought legacy effects on root morphological traits and plant biomass via soil biota feedback. New Phytologist, 236, 222-234.
DOI URL |
[16] |
Lozano YM, Aguilar-Trigueros CA, Roy J, Rillig MC (2021) Drought induces shifts in soil fungal communities that can be linked to root traits across 24 plant species. New Phytologist, 232, 1917-1929.
DOI PMID |
[17] |
Lu XM, He MY, Ding JQ, Siemann E (2018) Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener. The ISME Journal, 12, 2811-2822.
DOI |
[18] |
Oduor AMO, Adomako MO, Yuan YG, Li JM (2022) Older populations of the invader Solidago canadensis exhibit stronger positive plant-soil feedbacks and competitive ability in China. American Journal of Botany, 109, 1230-1241.
DOI PMID |
[19] |
Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: Biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. (in Chinese with English abstract)
DOI URL |
[潘晓云, 耿宇鹏, Alejandro Sosa, 张文驹, 李博, 陈家宽 (2007) 入侵植物喜旱莲子草——生物学、生态学及管理. 植物分类学报, 45, 884-900.] | |
[20] |
Pattison Z, Rumble H, Tanner RA, Jin L, Gange AC (2016) Positive plant-soil feedbacks of the invasive Impatiens glandulifera and their effects on above-ground microbial communities. Weed Research, 56, 198-207.
DOI URL |
[21] |
Reinhart KO, Packer A, van der Putten WH, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 6, 1046-1050.
DOI URL |
[22] |
Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, Sybren de Hoog G, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann- Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen KR, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology, 58, 224-239.
DOI PMID |
[23] |
Schwaegerle KE, Mciintyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution, 54, 452-461.
PMID |
[24] | Si CC, Liu XY, Wang CY, Wang L, Dai ZC, Qi SS, Du DL (2013) Different degrees of plant invasion significantly affect the richness of the soil fungal community. PLoS ONE, 8, e85490. |
[25] |
van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265-276.
DOI URL |
[26] |
van der Putten WH, Martijn Bezemer T, Berendse F, Veenendaal EM (2010) Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 16, 380-385.
DOI URL |
[27] | van Nuland ME, Bailey JK, Schweitzer JA (2017) Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nature Ecology & Evolution, 1, 150. |
[28] |
van Nuland ME, Wooliver RC, Pfennigwerth AA, Read QD, Ware IM, Mueller L, Fordyce JA, Schweitzer JA, Bailey JK (2016) Plant-soil feedbacks: Connecting ecosystem ecology and evolution. Functional Ecology, 30, 1032-1042.
DOI URL |
[29] |
Wang F, Che RX, Deng YC, Wu YB, Tang L, Xu ZH, Wang WJ, Liu HB, Cui XY (2021) Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biology and Biochemistry, 157, 108238.
DOI URL |
[30] |
Xiao S, Atwater DZ, Callaway RM (2019) Integrating spatial structure and interspecific and intraspecific plant-soil feedback effects and responses into community structure. Oikos, 128, 1296-1306.
DOI |
[31] |
Xue W, Bezemer TM, Berendse F (2018) Density-dependency and plant-soil feedback: Former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks. Plant and Soil, 428, 441-452.
DOI PMID |
[32] |
Zhang ZJ, Zhou F, Pan XY, van Kleunen M, Liu M, Li B (2019) Evolution of increased intraspecific competitive ability following introduction: The importance of relatedness among genotypes. Journal of Ecology, 107, 387-395.
DOI URL |
[33] |
Zhang ZY, Zhang ZJ, Pan XY (2015) Phenotypic plasticity of Alternanthera philoxeroides in response to shading: Introduced vs. native populations. Biodiversity Science, 23, 18-22. (in Chinese with English abstract)
DOI URL |
[张紫妍, 张致杰, 潘晓云 (2015) 喜旱莲子草对遮荫的可塑性反应: 入侵地与原产地种群的比较. 生物多样性, 23, 18-22.]
DOI |
|
[34] |
Zhou F, Zhang ZJ, Liu M, Pan XY (2017) Effects of nutrient levels on defense against specialist insects in an invasive alligator weed. Biodiversity Science, 25, 1276-1284. (in Chinese with English abstract)
DOI |
[周方, 张致杰, 刘木, 潘晓云 (2017) 养分影响入侵种喜旱莲子草对专食性天敌的防御. 生物多样性, 25, 1276-1284.]
DOI |
[1] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[4] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[5] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[6] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[7] | 俄广旭, 白天天, 朱振宇, 郭雪峰. 动物消化道微生物多样性与宿主协同进化关系的研究进展[J]. 生物多样性, 2023, 31(11): 23214-. |
[8] | 戚海迪, 张定海, 单立山, 陈国鹏, 张勃. 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展[J]. 生物多样性, 2023, 31(11): 23273-. |
[9] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[10] | 葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性, 2022, 30(7): 22385-. |
[11] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[12] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[13] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[14] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[15] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn