生物多样性 ›› 2024, Vol. 32 ›› Issue (6): 23484. DOI: 10.17520/biods.2023484 cstr: 32101.14.biods.2023484
收稿日期:
2023-12-23
接受日期:
2024-03-30
出版日期:
2024-06-20
发布日期:
2024-04-15
通讯作者:
* E-mail: liqiaoxia8024@nwnu.edu.cn基金资助:
Qiaoxia Li*(), Youlong Li, Jigang Li, Chenlong Chen, Kun Sun
Received:
2023-12-23
Accepted:
2024-03-30
Online:
2024-06-20
Published:
2024-04-15
Contact:
* E-mail: liqiaoxia8024@nwnu.edu.cn摘要:
两型闭花受精现象是指在植物个体发育的不同时期或不同部位会形成两种形态完全不同的花, 即异花传粉的开放花(chasmogamous flower, CH)与自花传粉的闭锁花(cleistogamous flower, CL)。维西堇菜(Viola monbeigii)与裂叶堇菜(V. dissecta)在早春时期为CH花, 夏季为CL花, 光周期可能调控着两种花型的发育。本研究对维西堇菜和裂叶堇菜不同光周期下的花型进行了形态观察与统计, 以探究光周期对两种花型发育的调控作用, 并阐明两种花型不同发育阶段的主要形态差异。结果表明: 维西堇菜和裂叶堇菜的CH和CL花的差异主要体现在花瓣与雄蕊的大小与数量、蜜腺体的有无、花丝长短、柱头有无弯曲等方面。CH花5个花瓣, 下花瓣有一长距, 5枚雄蕊, 花丝很短, 2枚雄蕊背部的蜜腺体伸入下花瓣形成的距中, 雌蕊花柱直立并高于雄蕊; CL花雄蕊2枚, 花丝较长, 无蜜腺体, 其余雄蕊与5个花瓣均为原基状, 雌蕊的柱头通常弯向2枚发育最好的雄蕊。另外存在着花瓣与雄蕊数量介于CH与CL花之间的过渡闭锁花(intermediate cleistogamous flower, inCL), 其花部特征与闭锁花一样, 花萼一直包裹着其他3轮花器官。中短日照(12 h及以下光照)下诱导的花芽大部分为CH花, 长日照(16 h光照)下诱导的大部分花芽为完全CL花。两个物种的CH花与CL花在4轮花器官原基形成后出现明显的形态差异, 并随着花芽发育的成熟, 形态差异更加明显。本研究揭示了光周期对维西堇菜与裂叶堇菜CH和CL花发育的调控作用, 阐明了CH与CL花出现明显差异的时期与具体形态差异, 为堇菜属两型闭花受精适应性进化研究提供了理论依据。
李巧峡, 李有龙, 李纪纲, 陈晨龙, 孙坤 (2024) 光周期调控维西堇菜与裂叶堇菜开放花和闭锁花的发育. 生物多样性, 32, 23484. DOI: 10.17520/biods.2023484.
Qiaoxia Li, Youlong Li, Jigang Li, Chenlong Chen, Kun Sun (2024) Effects of photoperiods on the development of chasmogamous and cleistogamous flowers in Viola monbeigii and V. dissecta. Biodiversity Science, 32, 23484. DOI: 10.17520/biods.2023484.
图1 维西堇菜与裂叶堇菜开放花(CH)和闭锁花(CL)的表型变异。A‒G: 维西堇菜; A: CH花; B: CH花雄蕊; C: CH花雌蕊; D: inCL花; E: CL花; F: CL花雄蕊; G: CL花雌蕊。H‒N: 裂叶堇菜; H: CH花; I: CH花雄蕊; J: CH花雌蕊; K: inCL花; L: CL花; M: CL花雄蕊; N: CL花雌蕊。an: 花药; ca: 心皮; fi: 花丝; pe: 花瓣; se: 花萼; st: 雄蕊; sg: 柱头; ng: 蜜腺体; sc: 雄蕊帽; sp: 距。比例尺为500 μm。
Fig. 1 The phenotype variation of chasmogamous (CH) and cleistogamous (CL) flowers in Viola monbeigii and V. dissecta. A‒G, V. monbeigii; A, CH flower; B, The stamens of CH flower; C, The pistil of CH flower; D, inCL flower; E, Completely CL flower; F, The stamens of CL flower; G, The pistil of CL flower. H‒N, V. dissecta; H, CH flower; I, The stamens of CH flower; J, The pistil of CH flower; K, inCL flower; L, CL flower; M, The stamens of CL flower; N, The pistil of CL flower. an, Anther; ca, Carpel; fi, Filament; pe, Petal; se, Sepal; st, Stamen; sg, Stigma; ng, Nectar gland; sc, Stamen cap; sp, Spur. Bar = 500 μm.
图2 光周期对维西堇菜与裂叶堇菜花发育的影响。光周期对维西堇菜(A)和裂叶堇菜(B)开花时间的影响; 光周期对维西堇菜(C)和裂叶堇菜(D)花芽诱导及CH花(开放花)和CL花(闭锁花)发育的影响。不同小写字母表示有显著性差异(P < 0.05)。
Fig. 2 Effects of photoperiods on flower development in Viola monbeigii and V. dissecta. Effects of photoperiods on flowering time of V. monbeigii (A) and V. dissecta (B); Effects of photoperiods on flower bud induction and CH-CL flower development of V. monbeigii (C) and V. dissecta (D). CH, Chasmogamous flower; CL, Cleistogamous flower; inCL, Intermediate cleistogamous flower. Different lower-case letters indicate significant differences (P < 0.05).
图3 维西堇菜与裂叶堇菜在不同光周期下的生长情况。10 h和12 h光照下的维西堇菜(A)和裂叶堇菜(B); 16 h光照下的维西堇菜(C)和裂叶堇菜(D)。红色箭头表示CL花。
Fig. 3 The growth of Viola monbeigii and V. dissecta under different photoperiods. The growth of V. monbeigii (A) and V. dissecta (B) under 10 h and 12 h daylight. The growth of V. monbeigii (C) and V. dissecta (D) under 16 h daylight (D). Red arrows indicate CL flowers.
图4 维西堇菜CH花(A‒J)和CL花(K‒T)发育的5个阶段。A、C、E、G、I为CH花5个发育阶段的外部形态, B、D、F、H、J为CH花5个发育阶段的解剖结构; K、M、O、Q、S为CL花5个发育阶段的外部形态, L、N、P、R、T为CL花5个发育阶段的解剖结构。se: 花萼; pe: 花瓣; sp: 距; st: 雄蕊; fi: 花丝; ng: 蜜腺体; ca: 心皮。比例尺为500 μm。
Fig. 4 Five development stages of CH-CL flower in Viola monbeigii. A‒J, Five development stages of CH flower; A, C, E, G, I, External morphology of 5 development stages of CH flower; B, D, F, H, J, Anatomical structure of 5 development stages of CH flower. K‒T, Five development stages of CL flower; K, M, O, Q, S, External morphology of five development stages of CL flower; L, N, P, R, T, Anatomical structure of 5 development stages of CL flower. se, Sepal; pe, Petal; sp, Spur; st, Stamen; fi, Filament; ng, Nectar gland; ca, Carpel. Bar = 500 μm.
图5 裂叶堇菜CH花(A‒J)和CL花(K‒T)发育的5个阶段。A、C、E、G、I为CH花5个发育阶段的外部形态, B、D、F、H、J为CH花5个发育阶段的解剖结构; K、M、O、Q、S为CL花5个发育阶段的外部形态, L、N、P、R、T为CL花5个发育阶段的解剖结构。Ba: 苞片; se: 花萼; pe: 花瓣; sp: 距; st: 雄蕊; fi: 花丝; ng: 蜜腺体; ca: 心皮。比例尺为500 μm。
Fig. 5 Five development stages of CH and CL flowers in Viola dissecta. A‒J, Five development stages of CH flower; A, C, E, G, I, External morphology of 5 development stages of CH flower; B, D, F, H, J, Anatomical structure of 5 development stages of CH flower. K‒T, Five development stages of CL flower; K, M, O, Q, S, External morphology of five development stages of CL flower; L, N, P, R, T, Anatomical structure of 5 development stages of CL flower. Ba, Bract; se, Sepal; pe, Petal; sp, Spur; st, Stamen; fi, Filament; ng, Nectar gland; ca, Carpel. Bar = 500 μm.
[1] |
Ansaldi BH, Weber JJ, Goodwillie C, Franks SJ (2019) Low levels of inbreeding depression and enhanced fitness in cleistogamous progeny in the annual plant Triodanis perfoliata. Botany, 97, 405-415.
DOI |
[2] | Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ (2022) Application of chloroplast genome in the identifcation of Traditional Chinese Medicine Viola philippica. BMC Genomics, 23, 540. |
[3] | Culley TM (2002) Reproductive biology and delayed selfing in Viola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. International Journal of Plant Products, 163, 113-122. |
[4] | Culley TM, Klooster MR (2007) The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms. Botany Review, 73, 1-30. |
[5] |
Furukawa T, Itagaki T, Murakoshi N, Sakai S (2020) Inherited dimorphism in cleistogamous flower production in Portulaca oleracea: A comparison of 16 populations growing under different environmental conditions. Annals of Botany, 125, 423-431.
DOI PMID |
[6] | Ginwal HS (2010) Inbreeding depression in Eucalyptus tereticornis Sm. due to cleistogamous flowering. New Forest, 40, 205-212. |
[7] | Koontz SM, Weekley CW, Crate SJH, Menges ES (2017) Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial. AoB Plants, 9, plx059. |
[8] | Kuhn M (1867) Einige Bermerkungen über Vandellia und den Blüten Dimorphismus. Botanical Zeitung, 25, 65-67. |
[9] | Le Corff J (1993) Effects of light and nutrient availability on chasmogamy and cleistogamy in an understory tropical herb, Calathea micans (Marantaceae). American Journal of Botany, 80, 1392-1399. |
[10] | Li QX, Huo QD, Wang J, Zhao J, Sun K, He CY (2016) Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biology, 6, 151. |
[11] | Li QX, Li JG, Zhang L, Pan CC, Yang N, Sun K, He CY (2021) Gibberellins are required for dimorphic flower development in Viola philippica. Plant Science, 303, 110749. |
[12] | Li QX, Li KP, Zhang ZR, Li JG, Wang B, Zhang ZM, Zhu YY, Pan CC, Sun K, He CY (2022) Transcriptomic comparison sheds new light on regulatory networks for dimorphic flower development in response to photoperiod in Viola prionantha. BMC Plant Biology, 22, 336. |
[13] |
Marcussen T, Blaxland K, Windham MD, Haskins KE, Armstrong F (2011) Establishing the phylogenetic origin, history, and age of the narrow endemic Viola guadalupensis (Violaceae). American Journal of Botany, 98, 1978-1988.
DOI PMID |
[14] | Masuda M, Yahara T, Maki M (2004) Evolution of floral dimorphism in a cleistogamous annual, Impatiens noli-tangere L. occurring under different environmental conditions. Ecological Research, 19, 571-580. |
[15] | Mayers AM, Lord EM (1983) Comparative flower development in the cleistogamous species Viola odorata. I. A growth rate study. American Journal of Botany, 70, 1548-1555. |
[16] |
Parra-Tabla V, Munguía-Rosas M, Campos-Navarrete MJ, Ramos-Zapata JA (2015) Effects of flower dimorphism and light environment on arbuscular mycorrhizal colonisation in a cleistogamous herb. Plant Biology, 17, 163-168.
DOI PMID |
[17] | Seguí J, Lázaro A, Traveset A, Salgado-Luarte C, Gianoli E (2018) Phenotypic and reproductive responses of an Andean violet to environmental variation across an elevational gradient. Alpine Botany, 128, 59-69. |
[18] |
Sternberger AL, Bowman MJ, Kruse CPS, Childs KL, Ballard HE, Wyatt SE (2019) Transcriptomics identifies modules of differentially expressed genes and novel cyclotides in Viola pubescens. Frontiers in Plant Science, 10, 156.
DOI PMID |
[19] | Sternberger AL, Ruhil AVS, Rosenthal DM, Ballard HE, Wyatt SE (2020) Environmental impact on the temporal production of chasmogamous and cleistogamous flowers in the mixed breeding system of Viola pubescens. PLoS ONE, 15, e0229726. |
[20] | Sun K, Yang YL, Wang QR, Xing H (1999) Study on wild ornamental resources of Viola from Gansu Province in early spring. Journal of Northwest Normal University (Natural Science), 35, 83-86. (in Chinese with English abstract) |
[孙坤, 杨永利, 王庆瑞, 幸华 (1999) 甘肃堇菜属野生早春观赏植物资源及其开发利用. 西北师范大学学报(自然科学版), 35, 83-86.] | |
[21] | Uphof JCT (1938) Cleistogamic flowers. Botanical Review, 4, 21-49. |
[22] | Wang Y, Ballard HE, McNally RR, Wyatt SE (2013) Gibberellins are involved but not sufficient to trigger a shift between chasmogamous-cleistogamous flower types in Viola pubescens. Journal of the Torrey Botanical Society, 140, 1-8. |
[23] | Zhang LH, Sun Q, Zhao JM, Zhang YW (2018) Plasticity in the reproductive strategy of a clonal cleistogamous species, Pseudostellaria heterophylla. Plant Ecology, 219, 1493-1502. |
[24] | Zhang J, Wu F, Yan Q, John UP, Cao M, Xu P, Zhang Z, Ma T, Zong X, Li J, Liu R, Zhang Y, Zhao Y, Kanzana G, Lv Y, Nan Z, Spangenberg G, Wang Y (2021) The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 19, 532-547. |
[25] | Zhu M, Wang Z, Yang Y, Wang Z, Mu W, Liu J (2023) Multi-omics reveal differentiation and maintenance of dimorphic flowers in an alpine plant on the Qinghai-Tibet Plateau. Molecular Ecology, 32, 1411-1424. |
[1] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
[2] | 张慧, 刘倩, 黄晓磊. 社会性昆虫级型和行为分化机制研究进展[J]. 生物多样性, 2021, 29(4): 507-516. |
[3] | 柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理[J]. 生物多样性, 2018, 26(9): 988-997. |
[4] | 国春策, 张睿, 山红艳, 孔宏智. 调控进化与形态多样性[J]. 生物多样性, 2014, 22(1): 72-79. |
[5] | 周大庆, 周春发, 邓文洪. 潜在洞巢资源差异对次级洞巢鸟及繁殖鸟类群落的影响[J]. 生物多样性, 2009, 17(5): 448-457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn