生物多样性 ›› 2025, Vol. 33 ›› Issue (7): 24475. DOI: 10.17520/biods.2024475 cstr: 32101.14.biods.2024475
余德菊1,2, 何云雲1,2(), 曹敏1(
), 王刚1(
), 杨洁1,*(
)(
)
收稿日期:
2024-10-31
接受日期:
2025-03-11
出版日期:
2025-07-20
发布日期:
2025-08-06
通讯作者:
*E-mail: yangjie@xtbg.org.cn
基金资助:
Deju Yu1,2, Yunyun He1,2(), Min Cao1(
), Gang Wang1(
), Jie Yang1,*(
)(
)
Received:
2024-10-31
Accepted:
2025-03-11
Online:
2025-07-20
Published:
2025-08-06
Contact:
*E-mail: yangjie@xtbg.org.cn
Supported by:
摘要: 热带森林群落因其极高的物种多样性而倍受生态学家的关注。在这些群落中, 一些大属对于推动群落的多样性起着重要作用。然而, 这些大属中的众多亲缘关系相近的物种如何在有限的空间内共存, 一直是群落生态学的关键问题之一。传统研究通过测量功能性状来解释共存, 但难以全面揭示其复杂格局。本研究以榕属(Ficus)植物为例, 结合转录组学、代谢组学与功能性状测定, 探索了系统发育关系和防御性状差异如何促进局域群落中的共存。结果表明: (1)除碳氮比外, 局域共存榕属树种的防御性状均未检测到显著系统发育信号; (2)物理防御性状、防御基因及代谢物多样性显著低于随机结构(P < 0.01), 呈现性状发散格局, 而系统发育关系与随机结构无显著差异(P = 0.194); (3)防御性状多样性格局表现出生境异质性。本研究揭示了局域共存榕属树种通过防御性状的发散格局促进防御生态位分化, 防御基因和代谢物多样性为此提供了新证据, 有望为该领域提供新的见解和思路。
余德菊, 何云雲, 曹敏, 王刚, 杨洁 (2025) 基于代谢组学与转录组学技术的热带森林树种共存机制研究——以榕属植物为例. 生物多样性, 33, 24475. DOI: 10.17520/biods.2024475.
Deju Yu, Yunyun He, Min Cao, Gang Wang, Jie Yang (2025) Coexistence mechanism of tropical forest tree species based on metabolomics and transcriptomics technologies: Taking Ficus species as an example. Biodiversity Science, 33, 24475. DOI: 10.17520/biods.2024475.
编号 Code | 物种 Species | 多度 Abundance | 生境 Habitat |
---|---|---|---|
1 | 青藤公 Ficus langkokensis (FICULA) | 1,412 | 半坡 Slope |
2 | 水同木 Ficus fistulosa (FICUFI) | 917 | 半坡 Slope |
3 | 对叶榕 Ficus hispida (FICUHI) | 501 | 半坡 Slope |
4 | 北碚榕 Ficus beipeiensis (FICUBEI) | 214 | 沟谷 Valley |
5 | 杂色榕 Ficus variegate (FICUVAR) | 172 | 半坡 Slope |
6 | 大果榕 Ficus auriculata (FICUAU) | 105 | 沟谷 Valley |
7 | 金毛榕 Ficus fulva (FICUFU) | 103 | 半坡 Slope |
8 | 大叶水榕 Ficus glaberrima (FICUGL) | 79 | 沟谷 Valley |
9 | 黄毛榕 Ficus esquiroliana (FICUES) | 79 | 半坡 Slope |
10 | 鸡嗉子榕 Ficus semicordata (FICUSE) | 39 | 半坡 Slope |
11 | 棒果榕 Ficus subincisa (FICUSU) | 31 | 沟谷 Valley |
12 | 粗叶榕 Ficus altissima (FICUAL) | 30 | 沟谷 Valley |
13 | 苹果榕 Ficus oligodon (FICUOL) | 30 | 沟谷 Valley |
表1 西双版纳热带季节雨林20 ha动态监测样地13种目标榕属树种的基本信息
Table 1 Basic information of 13 target Ficus species within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest
编号 Code | 物种 Species | 多度 Abundance | 生境 Habitat |
---|---|---|---|
1 | 青藤公 Ficus langkokensis (FICULA) | 1,412 | 半坡 Slope |
2 | 水同木 Ficus fistulosa (FICUFI) | 917 | 半坡 Slope |
3 | 对叶榕 Ficus hispida (FICUHI) | 501 | 半坡 Slope |
4 | 北碚榕 Ficus beipeiensis (FICUBEI) | 214 | 沟谷 Valley |
5 | 杂色榕 Ficus variegate (FICUVAR) | 172 | 半坡 Slope |
6 | 大果榕 Ficus auriculata (FICUAU) | 105 | 沟谷 Valley |
7 | 金毛榕 Ficus fulva (FICUFU) | 103 | 半坡 Slope |
8 | 大叶水榕 Ficus glaberrima (FICUGL) | 79 | 沟谷 Valley |
9 | 黄毛榕 Ficus esquiroliana (FICUES) | 79 | 半坡 Slope |
10 | 鸡嗉子榕 Ficus semicordata (FICUSE) | 39 | 半坡 Slope |
11 | 棒果榕 Ficus subincisa (FICUSU) | 31 | 沟谷 Valley |
12 | 粗叶榕 Ficus altissima (FICUAL) | 30 | 沟谷 Valley |
13 | 苹果榕 Ficus oligodon (FICUOL) | 30 | 沟谷 Valley |
图1 13种榕属树种在西双版纳热带季节雨林20 ha动态监测样地内的空间分布(物种缩写见表1)
Fig. 1 Spatial distribution of 13 Ficus species within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest (species abbreviations see Table 1)
性状 Trait | K值 K value | P值 P value |
---|---|---|
物理防御性状 Physical defense traits | ||
叶片厚度 Leaf thickness (mm) | 0.280 | 0.967 |
叶片韧性 Leaf toughness | 0.416 | 0.475 |
叶干物质含量 Leaf dry matter content (LDMC) (mg/g) | 0.270 | 0.920 |
叶片碳氮比 C : N | 1.063 | 0.008* |
防御基因 Defense genes | 0.216 | 0.992 |
化学防御性状 Chemical defense traits | ||
总代谢物 All plants secondary metabolites | 0.609 | 0.154 |
生物碱类 Alkaloids | 0.286 | 0.826 |
氨基酸/肽类 Amino acids/peptides | 0.627 | 0.090 |
碳水化合物类 Carbohydrates | 0.623 | 0.144 |
脂肪酸类 Fatty acids | 0.727 | 0.136 |
聚酮类 Polyketides | 0.647 | 0.102 |
莽草酸-苯丙素类 Shikimates and phenylpropanoids | 0.840 | 0.074 |
萜类 Terpenoids | 0.433 | 0.420 |
表2 西双版纳热带季节雨林20 ha动态监测样地13种榕属树种物理防御性状、防御基因和化学防御性状系统发育信号检验结果
Table 2 Phylogenetic signal tests for physical defense traits, defense-related genes, and chemical defense traits of 13 Ficus species within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest
性状 Trait | K值 K value | P值 P value |
---|---|---|
物理防御性状 Physical defense traits | ||
叶片厚度 Leaf thickness (mm) | 0.280 | 0.967 |
叶片韧性 Leaf toughness | 0.416 | 0.475 |
叶干物质含量 Leaf dry matter content (LDMC) (mg/g) | 0.270 | 0.920 |
叶片碳氮比 C : N | 1.063 | 0.008* |
防御基因 Defense genes | 0.216 | 0.992 |
化学防御性状 Chemical defense traits | ||
总代谢物 All plants secondary metabolites | 0.609 | 0.154 |
生物碱类 Alkaloids | 0.286 | 0.826 |
氨基酸/肽类 Amino acids/peptides | 0.627 | 0.090 |
碳水化合物类 Carbohydrates | 0.623 | 0.144 |
脂肪酸类 Fatty acids | 0.727 | 0.136 |
聚酮类 Polyketides | 0.647 | 0.102 |
莽草酸-苯丙素类 Shikimates and phenylpropanoids | 0.840 | 0.074 |
萜类 Terpenoids | 0.433 | 0.420 |
图2 西双版纳热带季节雨林20 ha动态监测样地榕属树种系统发育关系、物理防御性状、防御基因和代谢物的标准化平均成对距离(***表示组间比较时P < 0.01, NS表示该值与0比时P > 0.05)
Fig. 2 Standardized effect size of mean pairwise distance for phylogenetic relationships, physical defense traits, defense genes, and metabolites among Ficus species within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest (*** indicates P < 0.01 for comparisons between groups; NS indicates P > 0.05 for comparisons with zero)
图3 西双版纳热带季节雨林20 ha动态监测样地榕属树种不同生境防御性状的标准化平均成对距离(***表示组间比较时P < 0.01)
Fig. 3 Standardized effect size of mean pairwise distance of defensive traits in Ficus species from different habitats within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest (*** indicates P < 0.01 for comparisons between groups)
图4 西双版纳热带季节雨林20 ha动态监测样地榕属树种不同代谢物的标准化平均成对距离(***表示组间比较时P < 0.01, NS表示该值与0比P > 0.05)
Fig. 4 Standardized effect size of mean pairwise distance for different metabolites among Ficus species within the 20-ha dynamics plot in Xishuangbanna tropical seasonal rainforest (*** indicates P < 0.01 for comparisons between groups; NS indicates P > 0.05 for comparisons with zero)
[1] |
Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecology Letters, 10, 95-104.
PMID |
[2] | Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (accessed on 2024-06-11) |
[3] | Asefa M, Song XY, Cao M, Lasky JR, Yang J (2021) Temporal trait plasticity predicts the growth of tropical trees. Journal of Vegetation Science, 32, e013056. |
[4] | Ashton PS (1969) Speciation among tropical forest trees: Some deductions in the light of recent evidence. Biological Journal of the Linnean Society, 1, 155-196. |
[5] | Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108, 111-120. |
[6] |
Blomberg SP, Garland JT, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
DOI PMID |
[7] |
Böcker S, Letzel MC, Lipták Z, Pervukhin A (2009) SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25, 218-224.
DOI PMID |
[8] |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
DOI PMID |
[9] | Cao M, Zou XM, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica, 38, 306-309. |
[10] |
Chung M, Bruno VM, Rasko DA, Cuomo CA, Muñoz JF, Livny J, Shetty AC, Mahurkar A, Dunning Hotopp JC (2021) Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biology, 22, 121.
DOI PMID |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] |
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772.
DOI PMID |
[13] | Davies RG, Orme CDL, Webster AJ, Jones KE, Blackburn TM, Gaston KJ (2007) Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Global Ecology and Biogeography, 16, 220-233. |
[14] | Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15. |
[15] | Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proceedings of the National Academy of Sciences, USA, 114, E7499-E7505. |
[16] |
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150-3152.
DOI PMID |
[17] |
Gause GF (1934) Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science, 79, 16-17.
PMID |
[18] | Gershenzon J, Ullah C (2022) Plants protect themselves from herbivores by optimizing the distribution of chemical defenses. Proceedings of the National Academy of Sciences, USA, 119, e2120277119. |
[19] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652.
DOI PMID |
[20] |
Haak DC, Ballenger BA, Moyle LC (2014) No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology, 95, 1633-1641.
PMID |
[21] | Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8, 1494-1512. |
[22] | Harrison RD (2005) Figs and the diversity of tropical rainforests. BioScience, 55, 1053-1064. |
[23] | Harvey PH, Pagel M (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford. |
[24] | Hutchinson GE (1961) The paradox of the plankton. The American Naturalist, 95, 137-145. |
[25] | Jin L, Liu JJ, Xiao TW, Li QM, Lin LX, Shao XN, Ma CX, Li BH, Mi XC, Ren HB, Qiao XJ, Lian JY, Hao G, Ge XJ (2022) Plastome‐based phylogeny improves community phylogenetics of subtropical forests in China. Molecular Ecology Resources, 22, 319-333. |
[26] |
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
DOI PMID |
[27] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI PMID |
[28] |
Kim HW, Wang M, Leber CA, Nothias LF, Reher R, Kang KB, van der Hooft JJJ, Dorrestein PC, Gerwick WH, Cottrell GW (2021) NPClassifier: A deep neural network-based structural classification tool for natural products. Journal of Natural Products, 84, 2795-2807.
DOI PMID |
[29] |
Kristiansson E, Österlund T, Gunnarsson L, Arne G, Joakim Larsson DG, Nerman O (2013) A novel method for cross-species gene expression analysis. BMC Bioinformatics, 14, 70.
DOI PMID |
[30] | Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson J E, Weber MG, Coley PD (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proceedings of the National Academy of Sciences, USA, 106, 18073-18078. |
[31] | Lan G, Zhu H, Cao M, Hu Y, Wang H, Deng X, Zhou S, Cui J, Huang J, He Y, Liu L, Xu H, Song J (2009) Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, Southwest China. Ecological Research, 24, 1117-1124. |
[32] | Larget BR, Kotha SK, Dewey CN, Ané C (2010) BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics, 26, 2910-2911. |
[33] | Lasky JR, Yang J, Zhang G, Cao M, Tang Y, Keitt TH (2014) The role of functional traits and individual variation in the co-occurrence of Ficus species. Ecology, 95, 978-990. |
[34] | Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 100, 65-75. |
[35] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303.
DOI PMID |
[36] | Mirarab S, Warnow T (2015) ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics, 31, i44-i52. |
[37] | Newman A (2002) Tropical Rainforest:Our Most Valuable and Endangered Habitat with a Blueprint for Its Survival into the Third Millennium. Checkmark Books, New York. |
[38] | R Core Team (2023) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/. (accessed on 2024-06-11) |
[39] | Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE, 5, e9490. |
[40] | Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant-insect community diversity. Proceedings of the National Academy of Sciences, USA, 112, 10973-10978. |
[41] |
Sedio BE, Rojas Echeverri JC, Boya PCA, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology, 98, 616-623.
DOI PMID |
[42] | Seelig H, Stoner RJ, Linden JC (2012) Irrigation control of cowpea plants using the measurement of leaf thickness under greenhouse conditions. Irrigation Science, 30, 247-257. |
[43] | Seibold SD, Cadotte MW, MacIvor JS, Thorn S, Müller J (2018) The necessity of multitrophic approaches in community ecology. Trends in Ecology & Evolution, 33, 754-764. |
[44] |
Shafer MER (2019) Cross-species analysis of single-cell transcriptomic data. Frontiers in Cell and Developmental Biology, 7, 175.
DOI PMID |
[45] |
Smith SA, Dunn CW (2008) Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics, 24, 715-716.
DOI PMID |
[46] |
Solís-Lemus C, Bastide P, Ané C (2017) PhyloNetworks: A package for phylogenetic networks. Molecular Biology and Evolution, 34, 3292-3298.
DOI PMID |
[47] | Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[48] |
Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.
DOI PMID |
[49] | Su ZH, Sasaki A, Kusumi J, Chou PA, Tzeng HY, Li HQ, Yu H (2022) Pollinator sharing, copollination, and speciation by host shifting among six closely related dioecious fig species. Communications Biology, 5, 284. |
[50] | Swenson NG (2013) The assembly of tropical tree communities—The advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276. |
[51] | Swenson NG (2014) Functional and Phylogenetic Ecology in R. Springer, New York. |
[52] | Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, Turner BL, Ma KP (2017) Tree co-occurrence and transcriptomic response to drought. Nat‘ure Communications, 8, 1996. |
[53] | Swenson NG, Rubio VE (2024) The functional underpinnings of tropical forest dynamics—Functional traits, groups, and unmeasured diversity. Biotropica, 57, e13360. |
[54] |
Tissier A (2018) Plant secretory structures: More than just reaction bags. Current Opinion in Biotechnology, 49, 73-79.
DOI PMID |
[55] |
Valladares F, Bastias CC, Godoy O, Granda E, Escudero A (2015) Species coexistence in a changing world. Frontiers in Plant Science, 6, 866.
DOI PMID |
[56] | van Dongen S (2000) Graph Clustering by Flow Simulation. PhD dissertation. University of Utrecht, Utrecht. |
[57] |
Wang G, Zhang XT, Herre EA, McKey D, Machado CA, Yu WB, Cannon CH, Arnold ML, Pereira RAS, Ming R, Liu YF, Wang YB, Ma DN, Chen J (2021) Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nature Communications, 12, 718.
DOI PMID |
[58] | Wang MX, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi WY, Liu XT, Zhang LX, Knight R, Jensen PR, Palsson BØ, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34, 828-837. |
[59] | Wang XZ (2022) Study on the Coexistence of Community Tree Species Based on Secondary Metabolites: A Case Study of Xishuangbanna Tropical Seasonal Rain Forest. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming. (in Chinese with English abstract) |
[王雪昭 (2022) 基于次生代谢产物的群落物种共存研究——以西双版纳热带季节雨林为例. 博士学位论文, 中国科学院西双版纳热带植物园, 昆明.] | |
[60] |
Wang XZ, He YY, Sedio BE, Jin L, Ge XJ, Glomglieng S, Cao M, Yang JH, Swenson NG, Yang J (2023) Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecology Letters, 26, 1898-1910.
DOI PMID |
[61] | Wang XZ, Sun SW, Sedio BE, Glomglieng S, Cao M, Cao KF, Yang JH, Zhang JL, Yang J (2022) Niche differentiation along multiple functional-trait dimensions contributes to high local diversity of Euphorbiaceae in a tropical tree assemblage. Journal of Ecology, 110, 2731-2744. |
[62] |
Wang YT, Yang Y, Sun XL, Ji J (2023) Development of a widely-targeted metabolomics method based on gas chromatography-mass spectrometry. Chinese Journal of Chromatography, 41, 520-526. (in Chinese with English abstract)
DOI |
[王亚婷, 杨阳, 孙秀兰, 纪剑 (2023) 基于气相色谱-质谱法的广泛靶向代谢组学方法开发. 色谱, 41, 520-526.]
DOI |
|
[63] |
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35, 543-548.
DOI PMID |
[64] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475-505. |
[65] | Webb CO, Cannon CH, Davies SJ (2008) Ecological organization, biogeography, and the phylogenetic structure of tropical forest tree communities. Tropical Forest Community Ecology, 79-97. |
[66] |
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310-1324.
DOI PMID |
[67] |
Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Frontiers in Physiology, 9, 364.
DOI PMID |
[68] | Yang J (2013) Disentangling Mechanisms Underlying Tree Species Coexistence: Integrating Phylogenetic and Functional Dimensions. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming. (in Chinese with English abstract) |
[杨洁 (2013) 系统发育和功能性状维度的树种共存机制研究. 博士学位论文, 中国科学院西双版纳热带植物园, 昆明.] | |
[69] | Yang J, Fan H, He YY, Wang G, Cao M, Swenson NG (2024) Functional genomics and co-occurrence in a diverse tropical tree genus: The roles of drought- and defence-related genes. Journal of Ecology, 112, 575-589. |
[70] | Yang J, Zhang G, Ci X, Swenson NG, Cao M, Sha L, Li J, Baskin CC, Ferry Slik JW, Lin LX (2014) Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Functional Ecology, 28, 520-529. |
[71] | Zambrano J, Iida Y, Howe R, Lin LX, Umana MN, Wolf A, Worthy SJ, Swenson NG (2017) Neighbourhood defence gene similarity effects on tree performance: A community transcriptomic approach. Journal of Ecology, 105, 616-626. |
[72] | Zhao BG (1999) Nematicidal activity of quinolizidine alkaloids and the functional group pairs in their molecular structure. Journal of Chemical Ecology, 25, 2205-2214. |
[73] | Zhao J, Segar ST, McKey D, Chen J (2021) Macroevolution of defense syndromes in Ficus (Moraceae). Ecological Monographs, 91, e01428. |
[1] | 曹世宁, 余博航, 李景文, 冯益明, 卢琦, 王健铭. 中国黑戈壁地区植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2025, 33(8): 25134-. |
[2] | 于琦胧, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山森林不同演替阶段生物多样性与生产力的关系:基于物种、性状和系统发育的视角[J]. 生物多样性, 2025, 33(8): 25060-. |
[3] | 王蔼英, 廖万金. 协同演化研究: 协同系统发育分析方法与进展[J]. 生物多样性, 2025, 33(8): 25112-. |
[4] | 罗敏, 杨永川, 靳程, 周礼华, 龙宇潇. 重庆中心城区城市森林兽类组成特征及其对人类活动的响应[J]. 生物多样性, 2025, 33(5): 24402-. |
[5] | 孙亚君. 何谓高等或低等生物——澄清《物种起源》所蕴含的生物等级性的涵义及其成立性[J]. 生物多样性, 2025, 33(1): 24394-. |
[6] | 靳川, 张子嘉, 底凯, 张卫荣, 乔栋, 程思源, 胡中民. 海南热带雨林植物光合荧光气体交换和叶功能性状数据集[J]. 生物多样性, 2024, 32(9): 24139-. |
[7] | 李艳朋, 盘李军, 陈洁, 许涵, 杨立新. 亚热带人工混交林叶功能性状对森林演替的响应规律及影响因素[J]. 生物多样性, 2024, 32(7): 24049-. |
[8] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[9] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[10] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[11] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[12] | 冯嘉谊, 练琚愉, 冯瑜莙, 张东旭, 曹洪麟, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直分层对群落结构及功能的影响[J]. 生物多样性, 2024, 32(12): 24306-. |
[13] | 王斌, 钟艺倩, 杨美雪, 吴淼锐, 王艳萍, 陆芳, 陶旺兰, 李健星, 赵弘明, 刘晟源, 向悟生, 李先琨. 喀斯特季节性雨林优势树种叶片非结构性碳水化合物空间变异及生态驱动因素[J]. 生物多样性, 2024, 32(12): 24325-. |
[14] | 杨向林, 赵彩云, 李俊生, 种方方, 李文金. 植物入侵导致群落谱系结构更加聚集: 以广西国家级自然保护区草本植物为例[J]. 生物多样性, 2024, 32(11): 24175-. |
[15] | 何林君, 杨文静, 石宇豪, 阿说克者莫, 范钰, 王国严, 李景吉, 石松林, 易桂花, 彭培好. 火烧干扰下植物群落系统发育和功能多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2024, 32(11): 24269-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn