生物多样性 ›› 2025, Vol. 33 ›› Issue (5): 24402. DOI: 10.17520/biods.2024402 cstr: 32101.14.biods.2024402
所属专题: 昆蒙框架目标12下的中国城市生物多样性研究专辑
收稿日期:
2024-09-08
接受日期:
2025-05-04
出版日期:
2025-05-20
发布日期:
2025-06-23
通讯作者:
杨永川
基金资助:
Min Luo(), Yongchuan Yang*(
)(
), Cheng Jin, Lihua Zhou, Yuxiao Long
Received:
2024-09-08
Accepted:
2025-05-04
Online:
2025-05-20
Published:
2025-06-23
Contact:
Yongchuan Yang
Supported by:
摘要:
城市森林是城市生物多样性的核心区域, 然而城市森林兽类的生态策略及其对人类活动响应的研究仍然不足。本研究基于红外相机监测技术, 于2019年10月至2024年4月对重庆中心城区城市森林兽类多样性开展调查, 共设置29个监测位点, 布设45台红外相机, 累计有效相机工作日5,814 d, 每个位点平均运行200.48 ± 20.5 d。使用兽类形态、生活史和生态学特征构建功能性状空间。使用核密度分析评价了人类活动与野猪(Sus scrofa)、小麂(Muntiacus reevesi)、花面狸(Paguma larvata)、黄鼬(Mustela sibirica)和红腿长吻松鼠(Dremomys pyrrhomerus)日活动节律的重叠度, 并进一步研究了常见兽类对人类活动的时间响应。监测周期内共记录到兽类13种, 隶属3目7科, 其中国家一级重点保护野生动物有小灵猫(Viverricula indica); 国家二级重点保护野生动物有豹猫(Prionailurus bengalensis)。研究发现, 具有中等体型、中等扩散能力和杂食性生态策略的物种在功能性状空间聚集, 表明其适应策略的相似性。而占据功能性状空间边缘的物种更易受人类活动影响, 野猪在无人类直接活动的区域昼间活动频率显著增加。小麂在家猫(Felis catus)活动的区域活动窗口压缩, 在有家犬(Canis lupus familiaris)活动的区域通过时间偏移策略来调整其活动节律。家猫、家犬与兽类活动的时间重叠度高于徒步、采集等直接人类活动。结果表明, 兽类对人类活动的响应呈现复杂性, 家猫、家犬等间接人类影响更显著。研究结果可为城市生物多样性保护和管理提供科学支持。
罗敏, 杨永川, 靳程, 周礼华, 龙宇潇 (2025) 重庆中心城区城市森林兽类组成特征及其对人类活动的响应. 生物多样性, 33, 24402. DOI: 10.17520/biods.2024402.
Min Luo, Yongchuan Yang, Cheng Jin, Lihua Zhou, Yuxiao Long (2025) Composition characteristics of mammals and their responses to human activities in urban forests of Chongqing central urban area. Biodiversity Science, 33, 24402. DOI: 10.17520/biods.2024402.
物种 Species | 独立有效 照片数 No. of independent photographs | 相对多 度指数 Relative abundance index | 占总位点 的比例 Site proportion (%) |
---|---|---|---|
野猪 Sus scrofa | 46 | 7.91 | 44.83 |
小麂 Muntiacus reevesi | 232 | 39.90 | 27.59 |
猪獾 Arctonyx albogularis | 13 | 2.24 | 13.79 |
亚洲狗獾 Meles leucurus | 19 | 3.27 | 20.69 |
花面狸 Paguma larvata | 50 | 8.60 | 55.17 |
小灵猫 Viverricula indica | 17 | 2.92 | 17.24 |
豹猫 Prionailurus bengalensis | 1 | 0.17 | 3.45 |
帚尾豪猪 Atherurus macrourus | 7 | 1.20 | 3.45 |
马来豪猪 Hystrix brachyura | 3 | 0.52 | 3.45 |
鼬獾 Melogale moschata | 46 | 7.91 | 31.03 |
黄鼬 Mustela sibirica | 20 | 3.44 | 10.34 |
岩松鼠 Sciurotamias davidianus | 5 | 0.86 | 6.90 |
红腿长吻松鼠 Dremomys pyrrhomerus | 58 | 9.98 | 10.34 |
人 Homo sapiens | 190 | 32.68 | 62.07 |
家猫 Felis catus | 45 | 7.74 | 44.83 |
家犬 Canis lupus familiaris | 26 | 4.47 | 34.48 |
表1 重庆“四山” (缙云山、中梁山、铜锣山、明月山)红外相机探测记录
Table 1 Camera detection records in the four mountains (Jinyun Mountain, Zhongliang Mountain, Tongluo Mountain, and Mingyue Mountain) of Chongqing
物种 Species | 独立有效 照片数 No. of independent photographs | 相对多 度指数 Relative abundance index | 占总位点 的比例 Site proportion (%) |
---|---|---|---|
野猪 Sus scrofa | 46 | 7.91 | 44.83 |
小麂 Muntiacus reevesi | 232 | 39.90 | 27.59 |
猪獾 Arctonyx albogularis | 13 | 2.24 | 13.79 |
亚洲狗獾 Meles leucurus | 19 | 3.27 | 20.69 |
花面狸 Paguma larvata | 50 | 8.60 | 55.17 |
小灵猫 Viverricula indica | 17 | 2.92 | 17.24 |
豹猫 Prionailurus bengalensis | 1 | 0.17 | 3.45 |
帚尾豪猪 Atherurus macrourus | 7 | 1.20 | 3.45 |
马来豪猪 Hystrix brachyura | 3 | 0.52 | 3.45 |
鼬獾 Melogale moschata | 46 | 7.91 | 31.03 |
黄鼬 Mustela sibirica | 20 | 3.44 | 10.34 |
岩松鼠 Sciurotamias davidianus | 5 | 0.86 | 6.90 |
红腿长吻松鼠 Dremomys pyrrhomerus | 58 | 9.98 | 10.34 |
人 Homo sapiens | 190 | 32.68 | 62.07 |
家猫 Felis catus | 45 | 7.74 | 44.83 |
家犬 Canis lupus familiaris | 26 | 4.47 | 34.48 |
图5 探测到人类活动和未探测到人类活动的区域物种日活动节律及重叠系数(Δ)
Fig. 5 Species’ diel activity patterns and coefficient of overlap (Δ) at locations with human activity (black continuous curves) and without human activity (blue dashed curves)
[1] | Bateman PW, Fleming PA (2012) Big city life: Carnivores in urban environments. Journal of Zoology, 287, 1-23. |
[2] | Chen CD (2020) Forgotten urban habitats: Analysis of spontaneous vegetation on the urban walls of Chongqing City. Acta Ecologica Sinica, 40, 473-483. (in Chinese with English abstract) |
[陈春谛 (2020) 被遗忘的城市“生境”: 重庆市墙体自生植物调查分析. 生态学报, 40, 473-483.] | |
[3] |
Conejero C, Castillo-Contreras R, González-Crespo C, Serrano E, Mentaberre G, Lavín S, López-Olvera JR (2019) Past experiences drive citizen perception of wild boar in urban areas. Mammalian Biology, 96, 68-72.
DOI |
[4] | Contesse P, Hegglin D, Gloor S, Bontadina F, Deplazes P (2004) The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mammalian Biology, 69, 81-95. |
[5] |
Cooke RSC, Eigenbrod F, Bates AE (2019) Projected losses of global mammal and bird ecological strategies. Nature Communications, 10, 2279.
DOI PMID |
[6] |
Cox DTC, Gardner AS, Gaston KJ (2021) Diel niche variation in mammals associated with expanded trait space. Nature Communications, 12, 1753.
DOI PMID |
[7] | Davison J, Roper TJ, Wilson CJ, Heydon MJ, Delahay RJ (2011) Assessing spatiotemporal associations in the occurrence of badger-human conflict in England. European Journal of Wildlife Research, 57, 67-76. |
[8] | Diao YX, Zhao QQ, Weng Y, Huang ZX, Wu YQ, Gu BJ, Zhao Q, Wang F (2022) Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China. Landscape and Urban Planning, 228, 104581. |
[9] | Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends in Ecology & Evolution, 19, 391-398. |
[10] |
Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12, 22-33.
DOI PMID |
[11] |
Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science, 360, 1232-1235.
DOI PMID |
[12] | Hughes J, MacDonald DW (2013) A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157, 341-351. |
[13] | Ikeda T, Kuninaga N, Suzuki T, Ikushima S, Suzuki M (2019) Tourist-wild boar (Sus scrofa) interactions in urban wildlife management. Global Ecology and Conservation, 18, e00617. |
[14] | Ivan JS, Newkirk ES (2016) Cpw Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods in Ecology and Evolution, 7, 499-504. |
[15] | Ives CD, Lentini PE, Threlfall CG, Ikin K, Shanahan DF, Garrard GE, Bekessy SA, Fuller RA, Mumaw L, Rayner L, Rowe R, Valentine LE, Kendal D (2016) Cities are hotspots for threatened species. Global Ecology and Biogeography, 25, 117-126. |
[16] | Junker RR, Albrecht J, Becker M, Keuth R, Farwig N, Schleuning M (2023) Towards an animal economics spectrum for ecosystem research. Functional Ecology, 37, 57-72. |
[17] | Li S, Wang DJ, Bu HL, Liu XG, Jin T (2016) Camera-trapping survey on the mammal diversity of the Laohegou Nature Reserve, Sichuan Province. Acta Theriologica Sinica, 36, 282-291. (in Chinese with English abstract) |
[李晟, 王大军, 卜红亮, 刘小庚, 靳彤 (2016) 四川省老河沟自然保护区兽类多样性红外相机调查. 兽类学报, 36, 282-291.] | |
[18] | Li YH, Wan Y, Shen H, Loss SR, Marra PP, Li ZQ (2021) Estimates of wildlife killed by free-ranging cats in China. Biological Conservation, 253, 108929. |
[19] | Loss SR, Marra PP (2017) Population impacts of free-ranging domestic cats on mainland vertebrates. Frontiers in Ecology and the Environment, 15, 502-509. |
[20] | Maor R, Dayan T, Ferguson-Gow H, Jones KE (2017) Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution, 1, 1889-1895. |
[21] | Markandya A, Taylor T, Longo A, Murty MN, Murty S, Dhavala K (2008) Counting the cost of vulture decline—An appraisal of the human health and other benefits of vultures in India. Ecological Economics, 67, 194-204. |
[22] | Møller AP (2012) Urban areas as refuges from predators and flight distance of prey. Behavioral Ecology, 23, 1030-1035. |
[23] | O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131-139. |
[24] | Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF, Weedon J (2022) Vegan: Community Ecology Package. https://cran.r-project.org/package=vegan. (accessed on 2024-05-12) |
[25] | Penjor U, Cushman SA, Kaszta ŻM, Sherub S, MacDonald DW (2022) Effects of land use and climate change on functional and phylogenetic diversity of terrestrial vertebrates in a Himalayan biodiversity hotspot. Diversity and Distributions, 28, 2931-2943. |
[26] |
Ramirez JI, Zwerts JA, van Kuijk M, Iacobelli P, Li XQ, Herdoiza N, Jansen PA (2021) Density dependence of daily activity in three ungulate species. Ecology and Evolution, 11, 7390-7398.
DOI PMID |
[27] | Ramos-Rendón AK, Gual-Sill F, Cervantes FA, González-Salazar C, García-Morales R, Martínez-Meyer E (2023) Assessing the impact of free-ranging cats (Felis silvestris catus) and dogs (Canis lupus familiaris) on wildlife in a natural urban reserve in Mexico City. Urban Ecosystems, 26, 1341-1354. |
[28] |
Richardson JL, Michaelides S, Combs M, Djan M, Bisch L, Barrett K, Silveira G, Butler J, Aye TT, Munshi-South J, DiMatteo M, Brown C, McGreevy TJ (2021) Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evolutionary Applications, 14, 163-177.
DOI PMID |
[29] | Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337. |
[30] | Soria CD, Pacifici M, Di Marco M, Stephen SM, Rondinini C (2021) COMBINE: A coalesced mammal database of intrinsic and extrinsic traits. Ecology, 102, e03344. |
[31] | Soulsbury CD, White PCL (2015) Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildlife Research, 42, 541-553. |
[32] |
Vallejo-Vargas AF, Sheil D, Semper-Pascual A, Beaudrot L, Ahumada JA, Akampurira E, Bitariho R, Espinosa S, Estienne V, Jansen PA, Kayijamahe C, Martin EH, Lima MGM, Mugerwa B, Rovero F, Salvador J, Santos F, Spironello WR, Uzabaho E, Bischof R (2022) Consistent diel activity patterns of forest mammals among tropical regions. Nature Communications, 13, 7102.
DOI PMID |
[33] | Wang F, McShea WJ, Wang DJ, Li S, Zhao Q, Wang H, Lu Z (2014) Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE, 9, e105086. |
[34] |
Wang QW, Zhao HY, Liu Q, Wan N, Zhu ZB, Niu HY, Zhang HM (2023) Mammal diversity in the forest fragments of Wuhan City. Acta Theriologica Sinica, 43, 258-269. (in Chinese with English abstract)
DOI |
[汪琪薇, 赵恒月, 刘勤, 万能, 朱志兵, 牛红玉, 张洪茂 (2023) 武汉市城市破碎化森林中野生哺乳动物的多样性. 兽类学报, 43, 258-269.]
DOI |
|
[35] | Weng Y, McShea W, Diao YX, Yang HB, Zhang XF, Gu BJ, Bu HL, Wang F (2022) The incursion of free-ranging dogs into protected areas: A spatio-temporal analysis in a network of giant panda reserves. Biological Conservation, 265, 109423. |
[36] | Yan X, Owens JR, Wen YP, Su XY, Wang ZH, Liu SR, Zhang DS, Callan R, Bi WL, Qi DW, Spotila JR, Hou R, Zhang ZH (2020) Dogs and disease threats to giant pandas in China. Journal of Wildlife Management, 84, 268-276. |
[37] | Zhao GJ, Yang HT, Xie B, Gong YN, Ge JP, Feng LM (2020) Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Global Ecology and Conservation, 21, e00897. |
[1] | 黄定旭, 肖文宏, 白小节, 刘邦友, 黎源君, 梁盛, 肖治术, 刘伟. 赤水桫椤自然保护区中小型食肉目动物昼夜活动节律的比较[J]. 生物多样性, 2025, 33(6): 24376-. |
[2] | 毛静, 王婧, 黄杰, 熊姝红, 张自亮, 张佑祥, 吴涛. 湖南高望界国家级自然保护区2021–2023年鸟兽多样性监测数据集[J]. 生物多样性, 2025, 33(6): 24489-. |
[3] | 龚翠凤, 韦伟, 罗概, 韩一敏, 吴鹏程, 何梦楠, 闵清悦, 付强, 陈鹏. 大熊猫国家公园崇州片区有蹄类动物空间分布及共存关系[J]. 生物多样性, 2025, 33(3): 24260-. |
[4] | 王大伟, 程帅, 冯佳伟, 王天明. 东北地区张广才岭2015-2020年野生动物红外相机监测数据集[J]. 生物多样性, 2025, 33(2): 24384-. |
[5] | 靳川, 张子嘉, 底凯, 张卫荣, 乔栋, 程思源, 胡中民. 海南热带雨林植物光合荧光气体交换和叶功能性状数据集[J]. 生物多样性, 2024, 32(9): 24139-. |
[6] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[7] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[8] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[9] | 李艳朋, 盘李军, 陈洁, 许涵, 杨立新. 亚热带人工混交林叶功能性状对森林演替的响应规律及影响因素[J]. 生物多样性, 2024, 32(7): 24049-. |
[10] | 张明军, 王合升, 颜文博, 符运南, 王琦, 曾治高. 海南大田国家级自然保护区小灵猫的活动节律与栖息地选择[J]. 生物多样性, 2024, 32(6): 23420-. |
[11] | 钟超, 廖亚琴, 刘伟杰, 隋昊志, 陈清华. 广东沿海海草床的现状、面临的威胁与保护建议[J]. 生物多样性, 2024, 32(2): 23201-. |
[12] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[13] | 冯嘉谊, 练琚愉, 冯瑜莙, 张东旭, 曹洪麟, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直分层对群落结构及功能的影响[J]. 生物多样性, 2024, 32(12): 24306-. |
[14] | 麦晓烔, 康佳, 李梓琛, 王天明. 东北虎豹国家公园梅花鹿活动节律及其对道路的响应[J]. 生物多样性, 2024, 32(11): 24178-. |
[15] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn