生物多样性 ›› 2023, Vol. 31 ›› Issue (3): 22443. DOI: 10.17520/biods.2022443
薛玉洁1,2, 程安鹏2, 李珊2, 刘晓娟2, 李景文1,*()
收稿日期:
2022-08-03
接受日期:
2022-09-20
出版日期:
2023-03-20
发布日期:
2022-11-11
通讯作者:
李景文
作者简介:
* E-mail: lijingwen@bjfu.edu.cn基金资助:
Yujie Xue1,2, Anpeng Cheng2, Shan Li2, Xiaojuan Liu2, Jingwen Li1,*()
Received:
2022-08-03
Accepted:
2022-09-20
Online:
2023-03-20
Published:
2022-11-11
Contact:
Jingwen Li
摘要:
灌木是森林生态系统的重要组成部分, 在维持物种多样性、促进养分循环、保护幼苗更新以及促进营养级相互作用等方面具有重要作用, 其存活情况对森林群落组成和生态系统功能具有重要意义。但亚热带森林中灌木的存活情况及其影响因素仍有待探究。本研究依托于中国亚热带森林生物多样性与生态系统功能实验研究平台(BEF-China), 利用105个不同乔木与灌木多样性相嵌套样方中2012年和2019年的灌木个体存活数据, 以及样方水平的土壤养分数据、地形数据、物种多样性数据和物种水平的功能性状数据, 通过构建一系列广义线型混合模型(GLMM)探讨了非生物因素、生物因素以及灌木功能性状对灌木存活的影响。结果表明: 不同灌木物种的存活率具有显著差异。坡度较小的山谷、山鞍部位以及土壤碳氮比较高的环境更有利于灌木存活; 乔木和灌木多样性对灌木存活影响有限, 但乔木多样性的增加可通过形成更郁闭的林冠提高灌木存活; 灌木功能性状显著影响灌木存活, 且倾向于保守型生活策略(即较小的比叶面积、叶片氮含量、气孔大小, 较高的叶干物质含量、木质密度)的灌木物种具有更易于存活。通过模型比较发现, 包含所有因素的全模型对灌木存活的解释度最高, 不同影响因素的贡献率由大到小依次为非生物因素、灌木功能性状以及生物因素。本研究表明灌木存活受到多方面因素的共同影响, 尽管土壤和地形等非生物因素的变化影响了灌木的存活, 但不同灌木由于功能性状间的差异同样形成了不同的存活表现, 而物种多样性的直接影响可能需要更长时间的监测才能更加显著。
薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文 (2023) 亚热带森林中环境和物种多样性对灌木存活的影响. 生物多样性, 31, 22443. DOI: 10.17520/biods.2022443.
Yujie Xue, Anpeng Cheng, Shan Li, Xiaojuan Liu, Jingwen Li (2023) The effects of environment and species diversity on shrub survival in subtropical forests. Biodiversity Science, 31, 22443. DOI: 10.17520/biods.2022443.
图1 BEF-China样地A中灌木种植设计示意图。(a)样地中灌木种植样方分布, 共计35个4亩大样方; (b)每个4亩大样方内分别设置灌木多样性为2、4、8的1亩样方; (c) 1亩样方中灌木和乔木种植位置示意图; (d)不同灌木多样性样方的林下景观。
Fig. 1 Design of shrub planting in BEF-China Site A. (a) Overview of shrub plots in Site A, in total 35 super-plots; (b) In each super-plot, shrubs were planted into the three 1-mu plots with richness levels of 2, 4 and 8 shrub species, respectively; (c) Scheme of shrub planting positions in relation to the tree planting positions; (d) Different views in plots with different shrub diversity.
图2 不同物种(a)或演替阶段(b)灌木存活率的变化。不同字母表示不同灌木物种间存活率差异显著(P < 0.05, Tukey检验)。EuMy: 大果卫矛; ArCr: 朱砂根; LoCh: 檵木; RhIn: 石斑木; EuMu: 格药柃; SyBu: 赤楠; CaCh: 浙江红山茶; GaJa: 栀子; DiMy: 杨梅叶蚊母树; DiBu: 小叶蚊母树; E表示在自然演替群落中, 该灌木出现于演替早期群落; E/L表示在自然演替中该灌木从早期到后期一直存在; I/L表示该灌木在演替中期到演替后期出现; L表示该灌木仅在演替后期出现。
Fig. 2 Survival rates of different shrub species (a) or different successional stages (b). Different letters show statistically significant differences according to a Tukey test at 0.05 level. EuMy, Euonymus myrianthus; ArCr, Ardisia crenata; LoCh, Loropetalum chinense; RhIn, Rhaphiolepis indica; EuMu, Eurya muricata; SyBu, Syzygium buxifolium; CaCh, Camellia chekiangoleosa; GaJa, Gardenia jasminoides; DiMy, Distylium myricoides; DiBu, D. buxifolium. E, Shrub occurs in early-successional stages; E/L, Shrub occurs in all successional stages; I/L, Shrub occurs in intermediate- and late-successional stages; L, Shrub occurs in late-successional stages.
图3 非生物因子(a)、生物因子(b)以及功能性状(c)对灌木存活的相对影响。Soil pH: 土壤pH值; Soil N: 土壤氮含量; Soil C: 土壤碳含量; Soil C/N: 土壤碳氮比; topo.PC1-4: 地形因素第一至第四主成分; logTR: 乔木多样性(以2为底的对数); logSR: 灌木多样性(以2为底的对数); logTR:logSR: logTR和logSR的交互效应; Canopy cover: 林冠盖度; trait.PC1-4: 功能性状第一至第四主成分。• P < 0.1; * P < 0.05; *** P < 0.001; 空心圆代表效应不显著(P > 0.1)。
Fig. 3 Relative effect of abiotic factors (a), biotic factors (b) and shrub functional traits (c) on shrub survival. Soil N, Soil nitrogen content; Soil C, Soil carbon content; Soil C/N, Soil carbon to nitrogen ratio; topo.PC1-4, The first, second, third, and fourth principal component of topography, respectively; logTR, Tree richness (log2-transformed contrast); logSR, Shrub richness (log2-transformed contrast); logTR:logSR, Interaction of logTR and logSR; Canopy cover, The canopy cover degree of tree; trait.PC1-4, The first, second, third, and fourth principal component of traits, respectively. • P < 0.1; * P < 0.05; *** P < 0.001. Unfilled circles indicate insignificant effects (P > 0.1).
图4 灌木功能性状主成分分析(PCA)结果。SA: 气孔面积; LA: 叶面积; Chl: 叶绿素含量; Thickness: 叶片厚度; LDMC: 叶干物质含量; Height: 株高; Crown area: 冠幅; WD: 木质密度; SD: 气孔密度; LC: 叶片碳含量; SLA: 比叶面积; LN: 叶片氮含量; EuMy、ArCr、LoCh、RhIn、EuMu、SyBu、CaCh、GaJa、DiMy、DiBu含义见图2。
Fig. 4 Principal component analysis (PCA) of shrub functional traits. SA, Stomatal area; LA, Leaf area; Chl, Leaf chlorophyll content; Thickness, Leaf thickness; LDMC, Leaf dry matter content; Height, Shrub height; Crown area, Shrub crown area; WD, Wood density; SD, Stomatal density; LC, Leaf carbon content; SLA, Specific leaf area; LN, Leaf nitrogen content; EuMy, ArCr, LoCh, RhIn, EuMu, SyBu, CaCh, GaJa, DiMy, and DiBu see Fig. 2.
模型 Models | AIC | ΔAIC | 边际决定系数 Marginal R2 | 条件决定系数 Conditional R2 |
---|---|---|---|---|
非生物模型 Abiotic model | 44,022.1 | 19.9 | 0.028 | 0.424 |
生物模型 Biotic model | 44,051.1 | 48.9 | 0.005 | 0.426 |
功能性状模型 Trait model | 44,041.2 | 39 | 0.261 | 0.409 |
全模型 Full model | 44,002.2 | 0 | 0.306 | 0.408 |
表1 不同灌木存活模型的AIC值以及R2
Table 1 AIC values and R2 of different models for shrub survival
模型 Models | AIC | ΔAIC | 边际决定系数 Marginal R2 | 条件决定系数 Conditional R2 |
---|---|---|---|---|
非生物模型 Abiotic model | 44,022.1 | 19.9 | 0.028 | 0.424 |
生物模型 Biotic model | 44,051.1 | 48.9 | 0.005 | 0.426 |
功能性状模型 Trait model | 44,041.2 | 39 | 0.261 | 0.409 |
全模型 Full model | 44,002.2 | 0 | 0.306 | 0.408 |
图5 全模型中各类因子对灌木存活的相对影响。biotic: 生物因素; abiotic: 环境因素; trait: 功能性状; trait.PC1、trait.PC2、trait.PC3、trait.PC4、Soil pH、Soil C、Soil N、Soil C/N、topo.PC1、topo.PC2、topo.PC3、topo.PC4、logTR、logSR、 logTR:logSR、Canopy cover含义见图3。? P < 0.1; * P < 0.05; ** P < 0.01; *** P < 0.001。空心圆代表效应不显著(P > 0.1)。
Fig. 5 Parameter estimates (standardized regression coefficients) and relative importance of fixed factors. trait, Functional traits; abiotic, Abiotic factors; biotic, Biotic factors; trait.PC1, trait.PC2, trait.PC3, trait.PC4, Soil pH, Soil C, Soil N, Soil C/N, topo.PC1, topo.PC2, topo.PC3, topo.PC4, logTR, logSR, logTR:logSR and Canopy cover see Fig. 3. ? P < 0.1; * P < 0.05; ** P < 0.01; *** P < 0.001. Unfilled circles indicate insignificant effects (P > 0.1).
[1] |
Bai XJ, Queenborough SA, Wang XG, Zhang J, Li BH, Yuan ZQ, Xing DL, Lin F, Ye J, Hao ZQ (2012) Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia, 170, 755-765.
DOI PMID |
[2] | Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng AP, Ma KP, Liu XJ (2021) Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603. |
[3] |
Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang AC, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81, 25-41.
DOI URL |
[4] |
Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
DOI URL |
[5] |
Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology, 90, 2755-2765.
PMID |
[6] | De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers BR, Hylander K, Luoto M, Vellend M, Verheyen K, Lenoir J (2019) Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3, 744-749. |
[7] |
De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P (2022) Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 233, 219-235.
DOI URL |
[8] | Du Z, Cai XH, Bao WK, Chen H, Pan HL (2016) Understory effects on overstory trees: A review. Chinese Journal of Applied Ecology, 27, 963-972. (in Chinese with English abstract) |
[杜忠, 蔡小虎, 包维楷, 陈槐, 潘红丽 (2016) 林下层植被对上层乔木的影响研究综述. 应用生态学报, 27, 963-972.]
DOI |
|
[9] |
Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. BioScience, 37, 550-556.
DOI URL |
[10] | Gao W, Huang SD, Lin JL, Huang MG, Wu XS, Huang XL, Huang YR (2021) Coupling relationships between community characteristics and species diversity of three forest types in subtropical China. Chinese Journal of Tropical Crops, 42, 1756-1763. (in Chinese with English abstract) |
[高伟, 黄石德, 林建丽, 黄茂根, 吴兴盛, 黄修麟, 黄雍容 (2021) 亚热带3种森林类型的群落特征与物种多样性的耦合关系. 热带作物学报, 42, 1756-1763.] | |
[11] |
Germany MS, Bruelheide H, Erfmeier A (2021) Drivers of understorey biomass: Tree species identity is more important than richness in a young forest. Journal of Plant Ecology, 14, 465-477.
DOI URL |
[12] |
Götmark F, Götmark E, Jensen AM (2016) Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Frontiers in Plant Science, 7, 1095.
DOI PMID |
[13] |
Grossman JJ, Vanhellemont M, Barsoum N, Bauhus J, Bruelheide H, Castagneyrol B, Cavender-Bares J, Eisenhauer N, Ferlian O, Gravel D, Hector A, Jactel H, Kreft H, Mereu S, Messier C, Muys B, Nock C, Paquette A, Parker J, Perring MP, Ponette Q, Reich PB, Schuldt A, Staab M, Weih M, Zemp DC, Scherer-Lorenzen M, Verheyen K (2018) Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 152, 68-89.
DOI URL |
[14] |
Gui XJ, Lian JY, Zhang RY, Li YP, Shen H, Ni YL, Ye WH (2019) Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province, China. Biodiversity Science, 27, 619-629. (in Chinese with English abstract)
DOI URL |
[桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉 (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27, 619-629.]
DOI |
|
[15] |
Healy C, Gotelli NJ, Potvin C (2008) Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. Journal of Ecology, 96, 903-913.
DOI URL |
[16] |
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
DOI URL |
[17] |
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical Journal, 50, 346-363.
DOI URL |
[18] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[19] |
Landuyt D, Ampoorter E, Bastias CC, Benavides R, Müller S, Scherer-Lorenzen M, Valladares F, Wasof S, Verheyen K (2020) Importance of overstorey attributes for understorey litter production and nutrient cycling in European forests. Forest Ecosystems, 7, 45.
DOI PMID |
[20] |
Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, Maes SL, De Frenne P, Ma SY, Proesmans W, Blondeel H, Sercu BK, Wang B, Wasof S, Verheyen K (2019) The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 25, 3625-3641.
DOI PMID |
[21] |
Landuyt D, Perring MP, Seidl R, Taubert F, Verbeeck H, Verheyen K (2018) Modelling understorey dynamics in temperate forests under global change—Challenges and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 31, 44-54.
DOI PMID |
[22] | Li YZ, Jiang Y, Zhao KN, Chen Y, Wei W, Shipley B, Chu CJ (2022) Exploring trait-performance relationships of tree seedlings along experimentally manipulated light and water gradients. Ecology, 103, e3703. |
[23] | Liu XJ, Ma KP (2015) Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. (in Chinese with English abstract) |
[刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[24] | Liu XJ, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang ZY, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang YY, Wang C, Staab M, Leppert KN, Wirth C, Schmid B, Ma KP (2018) Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 285, 20181240. |
[25] |
Lu MZ, Du H, Song TQ, Peng WX, Su L, Zhang H, Zeng ZX, Wang KL, Tang WN, Wei L, Zeng FP (2021) Drivers of tree survival in an evergreen-deciduous broadleaf karst forest in Southwest China. Forest Ecology and Management, 499, 119598.
DOI URL |
[26] |
Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese)
DOI URL |
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.]
DOI |
|
[27] |
Ma L, Chen C, Shen Y, Wu LF, Huang ZL, Cao HL (2014) Determinants of tree survival at local scale in a sub-tropical forest. Ecological Research, 29, 69-80.
DOI URL |
[28] |
Ma QH, Li YP, Lian JY, Ye WH (2018) Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 26, 535-544. (in Chinese with English abstract)
DOI |
[马钦洪, 李艳朋, 练琚愉, 叶万辉 (2018) 鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异. 生物多样性, 26, 535-544.]
DOI |
|
[29] | Meng TT, Ni J, Wang GH (2007) Plant functional traits environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. (in Chinese with English abstract) |
[孟婷婷, 倪健, 王国宏 (2007) 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[30] |
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133-142.
DOI URL |
[31] |
Nascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC (2005) Demographic and life-history correlates for Amazonian trees. Journal of Vegetation Science, 16, 625-634.
DOI URL |
[32] |
Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421-428.
DOI URL |
[33] |
Peng SY, Schmid B, Haase J, Niklaus PA (2017) Leaf area increases with species richness in young experimental stands of subtropical trees. Journal of Plant Ecology, 10, 128-135.
DOI URL |
[34] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
DOI |
[35] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríques G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI PMID |
[36] |
Qu P, Xing YJ, Wang QG (2018) Research progress of plant economic spectrum. Chinese Agricultural Science Bulletin, 34, 88-94. (in Chinese with English abstract)
DOI |
[曲鹏, 邢亚娟, 王庆贵 (2018) 植物经济谱研究进展. 中国农学通报, 34, 88-94.]
DOI |
|
[37] |
Sachs T, Novoplansky N (1993) The development and patterning of stomata and glands in the epidermis of Peperomia. New Phytologist, 123, 567-574.
DOI PMID |
[38] |
Schmid B, Baruffol M, Wang ZH, Niklaus PA (2017) A guide to analyzing biodiversity experiments. Journal of Plant Ecology, 10, 91-110.
DOI URL |
[39] |
Scholten T, Goebes P, Kühn P, Seitz S, Assmann T, Bauhus J, Bruelheide H, Buscot F, Erfmeier A, Fischer M, Härdtle W, He JS, Ma KP, Niklaus PA, Scherer-Lorenzen M, Schmid B, Shi XZ, Song ZS, von Oheimb G, Wirth C, Wubet T, Schmidt K (2017) On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China. Journal of Plant Ecology, 10, 111-127.
DOI URL |
[40] | Searle EB, Chen HYH, Paquette A (2022) Higher tree diversity is linked to higher tree mortality. Proceedings of the National Academy of Sciences, USA, 119, e2013171119. |
[41] | Shen ZH, Zhang XS, Jin YX (2000) Gradient analysis of the influence of mountain topography on vegetation pattern. Acta Phytoecologica Sinica, 24, 430-435. (in Chinese with English abstract) |
[沈泽昊, 张新时, 金义兴 (2000) 地形对亚热带山地景观尺度植被格局影响的梯度分析. 植物生态学报, 24, 430-435.] | |
[42] |
Song XY, Lim JY, Yang J, Luskin MS (2021) When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecology Letters, 24, 608-620.
DOI PMID |
[43] |
Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW, Ge JP (2015) Latitudinal variation of leaf stomatal traits from species to community level in forests: Linkage with ecosystem productivity. Scientific Reports, 5, 14454.
DOI PMID |
[44] | Wang YL, Ding Y, Hu Y, Chen J, Fan WW (2019) The study of shrubland drought dynamics in China and its impacts on vegetation growth. Acta Ecologica Sinica, 39, 2054-2062. (in Chinese with English abstract) |
[王亚林, 丁忆, 胡艳, 陈静, 范文武 (2019) 中国灌木生态系统的干旱化趋势及其对植被生长的影响. 生态学报, 39, 2054-2062.] | |
[45] | Wang YQ, Cai YR, Zeng HC, Xu MF, Su ZY (2016) Composition and diversity of understory plant species in subtropical forests under different canopy openness. Journal of Northwest A&F University (Natural Science Edition), 44, 64-72, 81. (in Chinese with English abstract) |
[王永强, 蔡燕茹, 曾焕忱, 徐明锋, 苏志尧 (2016) 不同林冠开度下亚热带林下植物的组成和多样性. 西北农林科技大学学报(自然科学版), 44, 64-72, 81.] | |
[46] |
Wu H, Franklin SB, Liu JM, Lu ZJ (2017) Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. Forest Ecology and Management, 384, 169-179.
DOI URL |
[47] |
Yang B, Li Y, Ding BY, Both S, Erfmeier A, Härdtle W, Ma KP, Schmid B, Scholten T, Seidler G, von Oheimb G, Yang XF, Bruelheide H (2017) Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China. Journal of Plant Ecology, 10, 179-189.
DOI URL |
[48] |
Yang XF, Bauhus J, Both S, Fang T, Härdtle W, Kröber W, Ma KP, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Scholten T, Seidler G, Schmid B, Oheimb G, Bruelheide H (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Research, 132, 593-606.
DOI URL |
[49] | Yu MJ, Hu ZH, Yu JP, Ding BY, Fang T (2001) Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. Journal of Zhejiang University (Agriculture and Life Sciences), (4), 23-28. (in Chinese with English abstract) |
[于明坚, 胡正华, 余建平, 丁炳扬, 方腾 (2001) 浙江古田山自然保护区森林植被类型. 浙江大学学报(农业与生命科学版), (4), 23-28.] |
[1] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[2] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[3] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[4] | 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性[J]. 生物多样性, 2023, 31(4): 22649-. |
[5] | 郭士琨, 王明强, 郭鹏飞, 陈婧婷, 牛泽清, 罗阿蓉, 杨娟娟, 周青松, 朱朝东. 中国亚热带森林筑巢独栖蜂类群及其寄生者多样性[J]. 生物多样性, 2023, 31(2): 22060-. |
[6] | 商晓凡, 张健, 高浩杰, 库伟鹏, 毕玉科, 李修鹏, 阎恩荣. 岛屿面积与气候共同影响舟山群岛种子植物丰富度格局[J]. 生物多样性, 2023, 31(12): 23392-. |
[7] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[8] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[9] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[10] | 付飞, 魏慧玉, 常育腾, 王备新, 陈凯. 澜沧江中游水生昆虫生活史和生态学性状多样性的海拔格局: 气候和土地利用的影响[J]. 生物多样性, 2022, 30(5): 21332-. |
[11] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[12] | 林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12): 22343-. |
[13] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[14] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[15] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn