生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 24049. DOI: 10.17520/biods.2024049
李艳朋1, 盘李军2, 陈洁1, 许涵1,*(), 杨立新2
收稿日期:
2024-02-01
接受日期:
2024-06-11
出版日期:
2024-07-20
发布日期:
2024-07-15
通讯作者:
*E-mail: ywfj@163.com
基金资助:
Yanpeng Li1, Lijun Pan2, Jie Chen1, Han Xu1,*(), Lixin Yang2
Received:
2024-02-01
Accepted:
2024-06-11
Online:
2024-07-20
Published:
2024-07-15
Contact:
*E-mail: ywfj@163.com
Supported by:
摘要:
植物功能性状能够有效表征物种的存活、生长和繁殖策略, 厘清人工混交林叶功能性状特征及其对森林演替的响应规律有助于深入理解群落构建过程。本文以广东省佛山市云勇林场2003−2010年对杉木(Cunninghamia lanceolata)纯林改造后形成的亚热带人工混交林为研究对象, 基于2018年对9个地点共27个20 m × 20 m固定样方的群落调查和功能性状数据, 探究了不同叶功能性状对森林演替的响应规律及影响因素。首先, 计算了6种叶功能性状的平均值、变异系数、种内和种间变异等统计参数。其次, 使用回归分析和相关性分析明确了不同叶功能性状及其权衡关系随演替的变化规律。最后, 使用多元逐步回归分析和层次分割法探讨了叶功能性状格局的影响因素。结果表明: (1)人工混交林演替过程中的叶功能性状具有较强的可塑性。各功能性状的变异系数介于5.63%−70.98%之间, 且种间变异均大于种内变异。(2)随着人工混交林的正向演替, 共存物种的生态策略由保守型向获取型转变。(3)森林演替显著影响叶功能性状之间的权衡关系, 主要表现为比叶面积(SLA)与叶有机碳含量(LC)、叶全氮含量(LN)以及叶全磷含量(LP)的相关性随着森林演替进程而增强。因此, 即便在局域空间尺度下仍然不能忽略环境背景对植物功能性状权衡关系的影响。(4)恢复时间、物种组成和叶功能性状的改变共同驱动不同演替时间序列下群落水平的叶功能性状格局, 但其相对贡献大小因所研究功能性状的不同而存在差异。研究结果揭示了人工混交林演替过程中叶功能性状的响应规律及影响因素, 有助于为未来基于植物功能性状选择造林物种提供理论依据。
李艳朋, 盘李军, 陈洁, 许涵, 杨立新 (2024) 亚热带人工混交林叶功能性状对森林演替的响应规律及影响因素. 生物多样性, 32, 24049. DOI: 10.17520/biods.2024049.
Yanpeng Li, Lijun Pan, Jie Chen, Han Xu, Lixin Yang (2024) Response and influencing factors of leaf functional traits to forest succession in subtropical mixed plantations. Biodiversity Science, 32, 24049. DOI: 10.17520/biods.2024049.
地点 Location | 经纬度 Latitude and longitude | 造林年份/恢复时间 Planting year/ Recovery time (yr) | 物种数 No. of species | 个体数 No. of individuals | Shannon-Wiener 多样性指数 Shannon-Wiener index | Simpson指数 Simpson index | Pielou均匀度指数 Pielou’s evenness index | 取样数量 No. of samples (stem) |
---|---|---|---|---|---|---|---|---|
P1 | 22°46′ N, 112°39′ E | 2003/15 | 15.00 ± 4.36 | 187.00 ± 44.31 | 1.99 ± 0.33 | 0.79 ± 0.08 | 0.74 ± 0.05 | 102 |
P2 | 22°43′ N, 112°40′ E | 2004/14 | 16.67 ± 0.58 | 130.00 ± 2.00 | 1.68 ± 0.22 | 0.63 ± 0.10 | 0.60 ± 0.07 | 100 |
P3 | 22°46′ N, 112°41′ E | 2004/14 | 12.67 ± 4.04 | 76.00 ± 23.00 | 1.93 ± 0.30 | 0.79 ± 0.08 | 0.78 ± 0.10 | 83 |
P4 | 22°46′ N, 112°40′ E | 2005/13 | 15.33 ± 5.69 | 101.33 ± 25.58 | 1.85 ± 0.15 | 0.74 ± 0.04 | 0.70 ± 0.07 | 95 |
P5 | 22°45′ N, 112°42′ E | 2005/13 | 9.00 ± 0.00 | 88.00 ± 26.06 | 1.54 ± 0.04 | 0.70 ± 0.01 | 0.70 ± 0.02 | 62 |
P6 | 22°43′ N, 112°41′ E | 2005/13 | 14.67 ± 0.58 | 126.67 ± 34.70 | 1.72 ± 0.20 | 0.69 ± 0.08 | 0.64 ± 0.08 | 92 |
P7 | 22°46′ N, 112°40′ E | 2009/9 | 7.33 ± 2.52 | 136.33 ± 27.61 | 1.20 ± 0.33 | 0.59 ± 0.11 | 0.61 ± 0.11 | 53 |
P8 | 22°44′ N, 112°40′ E | 2009/9 | 14.33 ± 2.08 | 262.33 ± 9.29 | 1.30 ± 0.16 | 0.52 ± 0.07 | 0.49 ± 0.05 | 97 |
P9 | 22°46′ N, 112°40′ E | 2010/8 | 13.33 ± 1.53 | 220.67 ± 37.69 | 1.52 ± 0.08 | 0.65 ± 0.03 | 0.59 ± 0.02 | 95 |
表1 基于2018年调查结果的云勇林场人工混交林基本信息(平均值 ± 标准差, n = 3)
Table 1 Basic information of mixed plantations in Yunyong Forest Farm based on the survey in 2018 (mean ± SD, n = 3)
地点 Location | 经纬度 Latitude and longitude | 造林年份/恢复时间 Planting year/ Recovery time (yr) | 物种数 No. of species | 个体数 No. of individuals | Shannon-Wiener 多样性指数 Shannon-Wiener index | Simpson指数 Simpson index | Pielou均匀度指数 Pielou’s evenness index | 取样数量 No. of samples (stem) |
---|---|---|---|---|---|---|---|---|
P1 | 22°46′ N, 112°39′ E | 2003/15 | 15.00 ± 4.36 | 187.00 ± 44.31 | 1.99 ± 0.33 | 0.79 ± 0.08 | 0.74 ± 0.05 | 102 |
P2 | 22°43′ N, 112°40′ E | 2004/14 | 16.67 ± 0.58 | 130.00 ± 2.00 | 1.68 ± 0.22 | 0.63 ± 0.10 | 0.60 ± 0.07 | 100 |
P3 | 22°46′ N, 112°41′ E | 2004/14 | 12.67 ± 4.04 | 76.00 ± 23.00 | 1.93 ± 0.30 | 0.79 ± 0.08 | 0.78 ± 0.10 | 83 |
P4 | 22°46′ N, 112°40′ E | 2005/13 | 15.33 ± 5.69 | 101.33 ± 25.58 | 1.85 ± 0.15 | 0.74 ± 0.04 | 0.70 ± 0.07 | 95 |
P5 | 22°45′ N, 112°42′ E | 2005/13 | 9.00 ± 0.00 | 88.00 ± 26.06 | 1.54 ± 0.04 | 0.70 ± 0.01 | 0.70 ± 0.02 | 62 |
P6 | 22°43′ N, 112°41′ E | 2005/13 | 14.67 ± 0.58 | 126.67 ± 34.70 | 1.72 ± 0.20 | 0.69 ± 0.08 | 0.64 ± 0.08 | 92 |
P7 | 22°46′ N, 112°40′ E | 2009/9 | 7.33 ± 2.52 | 136.33 ± 27.61 | 1.20 ± 0.33 | 0.59 ± 0.11 | 0.61 ± 0.11 | 53 |
P8 | 22°44′ N, 112°40′ E | 2009/9 | 14.33 ± 2.08 | 262.33 ± 9.29 | 1.30 ± 0.16 | 0.52 ± 0.07 | 0.49 ± 0.05 | 97 |
P9 | 22°46′ N, 112°40′ E | 2010/8 | 13.33 ± 1.53 | 220.67 ± 37.69 | 1.52 ± 0.08 | 0.65 ± 0.03 | 0.59 ± 0.02 | 95 |
功能性状 Functional trait | 平均值 ± 标准差 Mean ± SD | 最大值 Maximum value | 最小值 Minimum value | 变异系数 Coefficient of variance (%) |
---|---|---|---|---|
LDMC (g/g) | 0.32 ± 0.07 | 0.58 | 0.08 | 22.47 |
SLA (cm2/g) | 81.61 ± 57.93 | 300.73 | 13.81 | 70.98 |
LT (mm) | 0.18 ± 0.06 | 0.46 | 0.07 | 30.74 |
LC (g/kg) | 502.72 ± 28.28 | 567.63 | 395.84 | 5.63 |
LN (g/kg) | 21.76 ± 6.81 | 53.57 | 10.4 | 31.31 |
LP (g/kg) | 1.25 ± 0.46 | 3.89 | 0.38 | 36.55 |
表2 基于779株取样个体计算的云勇林场人工混交林不同叶功能性状基本特征
Table 2 Basic information of the leaf functional traits based on 779 individuals in Yunyong Forest Farm
功能性状 Functional trait | 平均值 ± 标准差 Mean ± SD | 最大值 Maximum value | 最小值 Minimum value | 变异系数 Coefficient of variance (%) |
---|---|---|---|---|
LDMC (g/g) | 0.32 ± 0.07 | 0.58 | 0.08 | 22.47 |
SLA (cm2/g) | 81.61 ± 57.93 | 300.73 | 13.81 | 70.98 |
LT (mm) | 0.18 ± 0.06 | 0.46 | 0.07 | 30.74 |
LC (g/kg) | 502.72 ± 28.28 | 567.63 | 395.84 | 5.63 |
LN (g/kg) | 21.76 ± 6.81 | 53.57 | 10.4 | 31.31 |
LP (g/kg) | 1.25 ± 0.46 | 3.89 | 0.38 | 36.55 |
图1 亚热带人工混交林群落水平功能性状加权平均值(CWM)随森林演替的变化趋势。LDMC: 叶干物质含量; SLA: 比叶面积; LT: 叶厚度; LC: 叶有机碳含量; LN: 叶全氮含量; LP: 叶全磷含量。
Fig. 1 Variation trend of the community-level weighted mean values of functional traits (CWM) with forest succession in subtropical mixed plantations. LDMC, Leaf dry matter content; SLA, Specific leaf area; LT, Leaf thickness; LC, Leaf organic carbon content; LN, Leaf total nitrogen content; LP, Leaf total phosphorus content.
图2 基于所有779株取样个体的叶功能性状相关关系。对角线下的数字表示相关系数; 对角线上的图形由椭圆形到圆形表示相关性逐渐降低; “×”表示相关性不显著(P > 0.05)。LDMC: 叶干物质含量; SLA: 比叶面积; LC: 叶有机碳含量; LN: 叶全氮含量; LP: 叶全磷含量; LT: 叶厚度。
Fig. 2 Correlation of leaf functional traits based on all 779 sampled individuals. The numbers below the diagonal represent the correlation coefficient; the shapes above the diagonal from ellipse to circle show that the correlation decreases gradually. “×” means no significant correlation between variables (P > 0.05). LDMC, Leaf dry matter content; SLA, Specific leaf area; LC, Leaf organic carbon content; LN, Leaf total nitrogen content; LP, Leaf total phosphorus content; LT, Leaf thickness.
图3 SLA与LC、LN和LP相关关系随森林演替的变化趋势。SLA: 比叶面积; LC: 叶有机碳含量; LN: 叶全氮含量; LP: 叶全磷含量。
Fig. 3 Variation trend of the correlation between SLA and LC, LN and LP with forest succession. SLA, Specific leaf area; LC, Leaf organic carbon content; LN, Leaf total nitrogen content; LP, Leaf total phosphorus content.
叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶有机碳含量 LC | 叶全氮含量 LN | 叶全磷含量 LP | |
---|---|---|---|---|---|---|
物种丰富度周转率 Tsp | -0.35*** | 0.25** | -0.47*** | -0.42*** | 0.20** | 0.14* |
个体多度周转率Tind | -0.25*** | 0.17* | -0.30*** | -0.37*** | ns | ns |
胸高断面积增长率 Tba | ns | ns | 0.25** | 0.28** | 0.23** | 0.19** |
变异系数 CV | 0.14** | 0.28*** | 0.11* | 0.26** | 0.38* | 0.22** |
种内变异与种间变异的比值 Q | 0.11* | ns | 0.18* | ns | 0.66*** | 0.31*** |
恢复时间 RT | -0.41*** | 0.34*** | ns | -0.60*** | 0.73*** | 0.45*** |
表3 6种群落水平功能性状加权平均值(CWM)与各影响因子的多元回归分析
Table 3 Multiple regressions relating the community-level weighted mean values of functional traits (CWM) and impact factors across 6 leaf functional traits. LDMC, Leaf dry matter content; SLA, Specific leaf area; LT, Leaf thickness; LC, Leaf organic carbon content; LN, Leaf total nitrogen content; LP, Leaf total phosphorus content; Tsp, Species richness turnover rate; Tind, Abundance turnover rate; Tba, Growth rate of basal area; CV, Coefficient of variation; Q, The ratio of intraspecific variation to interspecific variation; RT, Recovery time.
叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶有机碳含量 LC | 叶全氮含量 LN | 叶全磷含量 LP | |
---|---|---|---|---|---|---|
物种丰富度周转率 Tsp | -0.35*** | 0.25** | -0.47*** | -0.42*** | 0.20** | 0.14* |
个体多度周转率Tind | -0.25*** | 0.17* | -0.30*** | -0.37*** | ns | ns |
胸高断面积增长率 Tba | ns | ns | 0.25** | 0.28** | 0.23** | 0.19** |
变异系数 CV | 0.14** | 0.28*** | 0.11* | 0.26** | 0.38* | 0.22** |
种内变异与种间变异的比值 Q | 0.11* | ns | 0.18* | ns | 0.66*** | 0.31*** |
恢复时间 RT | -0.41*** | 0.34*** | ns | -0.60*** | 0.73*** | 0.45*** |
图4 各影响因子对6种叶功能性状分布格局的相对贡献。CWM: 群落水平功能性状加权平均值; LDMC: 叶干物质含量; SLA: 比叶面积; LT: 叶厚度; LC: 叶有机碳含量; LN: 叶全氮含量; LP: 叶全磷含量; RT: 恢复时间; Tsp: 物种丰富度周转率; Tind: 个体多度周转率; Tba: 胸高断面积增长率; CV: 变异系数; Q: 种内变异与种间变异的比值。
Fig. 4 Relative importance for each of impact variables to the distribution patterns of 6 leaf functional traits. CWM, Community-level weighted mean values of functional traits; LDMC, Leaf dry matter content; SLA, Specific leaf area; LT, Leaf thickness; LC, Leaf organic carbon content; LN, Leaf total nitrogen content; LP, Leaf total phosphorus content; RT, Recovery time; Tsp, Species richness turnover rate; Tind, Abundance turnover rate; Tba, Growth rate of basal area; CV, Coefficient of variation; Q, The ratio of intraspecific variation to interspecific variation.
[1] | Amazonas NT, Forrester DI, Oliveira RS, Brancalion PHS (2018) Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. Forest Ecology and Management, 418, 34-40. |
[2] | Cheng SQ, Jiang F, Jin GZ (2022) Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest. Chinese Journal of Plant Ecology, 46, 678-686. (in Chinese with English abstract) |
[程思祺, 姜峰, 金光泽 (2022) 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系. 植物生态学报, 46, 678-686.]
DOI |
|
[3] | Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography, 37, 814-826. |
[4] | de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janeček Š, Lepš J (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution, 2, 163-174. |
[5] | De Frenne P, Kolb A, Graae BJ, Decocq G, Baltora S, De Schrijver A, Brunet J, Chabrerie O, Cousins SAO, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Liira J, Saguez R, Shevtsova A, Baskin CC, Verheyen K (2011) A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa. Plant Botany, 13, 493-501. |
[6] |
Del Vecchio S, Mattana E, Ulian T, Buffa G (2021) Functional seed traits and germination patterns predict species coexistence in Northeast Mediterranean foredune communities. Annals of Botany, 127, 361-370.
DOI PMID |
[7] | Ding SY, Lu XL, Li HM (2005) A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park. Acta Ecologica Sinica, 25, 2862-2867. (in Chinese with English abstract) |
[丁圣彦, 卢训令, 李昊民 (2005) 天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较. 生态学报, 25, 2862-2867.] | |
[8] | Du Z, Hu J, Xiao QH, Feng Q, He P, Li R (2020) Analysis on characteristics and development countermeasures of plantation resources in China. Central South Forest Inventory and Planning, 39(1), 5-10. (in Chinese with English abstract) |
[杜志, 胡觉, 肖前辉, 冯强, 贺鹏, 李锐 (2020) 中国人工林特点及发展对策探析. 中南林业调查规划, 39(1), 5-10.] | |
[9] | Fan KX (2020) The Turnover of Woody Plants in Tropical Natural Forests of Bawangling Nature Reserve on Hainan Island, China. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract) |
[范克欣 (2020) 海南霸王岭自然保护区热带天然林木本植物周转动态分析. 博士学位论文, 中国林业科学研究院, 北京.] | |
[10] | Grömping U (2007) Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 1-27. |
[11] | Guo Y, Zhao P, Zhou Z, Yi J, Chai Y, Yue M (2020) Coexistence of three common species in a temperate mixed forest: Linking seedling microhabitats and functional traits. Forest Ecology and Management, 465, 118057. |
[12] | Guo ZW, Zhao WX, Luo JF, Zheng JM (2019) The variation characteristics of plant functional traits among 16 woody plants in subtropical broad-leaved forest at Dagang Mountain. Journal of Fujian Normal University (Natural Science Edition), 35(1), 82-87. (in Chinese with English abstract) |
[郭志文, 赵文霞, 罗久富, 郑景明 (2019) 大岗山亚热带常绿阔叶林16种木本植物功能性状的变异特征. 福建师范大学学报(自然科学版), 35(1), 82-87.] | |
[13] | Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across individuals and species: An example from a Costa Rican dry forest. Functional Ecology, 24, 217-223. |
[14] | Johnson JW, Lebreton JM (2004) History and use of relative importance indices in organizational research. Organizational Research Methods, 7, 238-257. |
[15] | Kazakou E, Violle C, Roumet C, Navas ML, Vile D, Kattge J, Garnier E (2014) Are trait-based species rankings consistent across data sets and spatial scales? Journal of Vegetation Science, 25, 235-247. |
[16] | Laliberté E, Legendre P, Shipley B (2014) FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0-12, https://cran.r-project.org/package=FD/. (accessed on 2023-07-18 |
[17] | Lavorel S, Grigulis K, Mclntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field-methodology matters! Functional Ecology, 22: 134-147. |
[18] | Li TT, Rong L, Wang MJ, Ye TM, Wang Q (2021) Dynamics of phytoecommunity structure of karst secondary forest in Central Guizhou. Guihaia, 41, 684-694. (in Chinese with English abstract) |
[李婷婷, 容丽, 王梦洁, 叶天木, 王琪 (2021) 黔中喀斯特次生林群落结构动态. 广西植物, 41, 684-694.] | |
[19] | Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021) Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197. (in Chinese with English abstract) |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021) 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[20] | Li YP, Xu H, Chen J, Xiao YH, Ni YL, Zhang RY, Ye WH, Lian JY (2022) Effects of soil resource availability on patterns of plant functional traits across spatial scales. Ecology and Evolution, 12, e8587. |
[21] | Liu CLC, Kuchma O, Krutovsky KV (2018) Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15, e00419. |
[22] | Liu R, Yang XJ, Gao RR, Huang ZY, Cornelissen JHC (2023) Coordination of economics spectra in leaf, stem and root within the genus Artemisia along a large environmental gradient in China. Global Ecology and Biogeography, 32, 324-338. |
[23] | Liu RH, Bai JL, Bao H, Nong JL, Zhao JJ, Jiang Y, Liang SC, Li YJ (2020) Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, Southwest China. Chinese Journal of Plant Ecology, 44, 828-841. (in Chinese with English abstract) |
[刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟 (2020) 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联. 植物生态学报, 44, 828-841.] | |
[24] | Liu SR, Yang YJ, Wang H (2018) Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services. Acta Ecologica Sinica, 38, 1-10. (in Chinese with English abstract) |
[刘世荣, 杨予静, 王晖 (2018) 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营. 生态学报, 38, 1-10.] | |
[25] | Liu WQ, Li JX, Gong JW, Zhao LJ, Xiang WH, Cheng X, Wang WJ, Zhang YL (2022) Variation in leaf functional traits and adaptation strategies of dominant tree species in a Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest. Acta Ecologica Sinica, 42, 7256-7265. (in Chinese with English abstract) |
[刘文倩, 李家湘, 龚俊伟, 赵丽娟, 项文化, 程幸, 王维嘉, 张意灵 (2022) 柯-青冈常绿阔叶林优势树种叶片性状变异及适应策略. 生态学报, 42, 7256-7265.] | |
[26] | Long QZ, Du H, Su L, Zeng FP, Lian ZW, Peng WX, Liu KP, Tan WN (2023) Variation of plant functional traits and adaptive strategies in karst evergreen deciduous broad- leaved forest. Acta Ecologica Sinica, 43, 8875-8883. (in Chinese with English abstract) |
[隆庆之, 杜虎, 苏樑, 曾馥平, 连子文, 彭晚霞, 刘坤平, 谭卫宁 (2023) 喀斯特常绿落叶阔叶林木本植物功能性状变异及其适应策略. 生态学报, 43, 8875-8883.] | |
[27] | Mei WP, Yu GC, Lai JS, Rao Q, Umezawa Y (2018) basicTrendline: Add trendline and confidence interval of basic regression models to plot. R package version 2.0.3, https://cran.r-project.org/src/contrib/Archive/basicTrendline/ (accessed on 2023-07-18) |
[28] | National Forestry and Grassland Administration (2019) China Forest Resources Report (2014-2018). China Forestry Publishing House, Beijing. (in Chinese) |
[国家林业和草原局 (2019) 中国森林资源报告(2014-2018). 中国林业出版社, 北京.] | |
[29] | Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2013) vegan: Community Ecology Package. R Package Version 2.0-10, https://cran.r-project.org/src/contrib/Archive/vegan/. (accessed on 2023-07-18) |
[30] | Pan LJ, He ZL, Xian WG, Tan S, Wu HJ, Wu WF, Tang GD, Xu H (2021) Species composition of rebuilding Cunninghamia lanceolata ecological public welfare forests in Yunyong Forest Park, Foshan. Foresty and Environmental Science, 37(3), 68-74. (in Chinese with English abstract) |
[盘李军, 何增丽, 冼伟光, 谭莎, 吴华俊, 吴文凤, 唐光大, 许涵 (2021) 云勇森林公园杉木生态公益林改造后群落物种组成. 林业与环境科学, 37(3), 68-74.] | |
[31] | Pan LJ, Wang MH, Xian GB, Wang M, Tang HH, Chen JX, Zhang Q (2013) Preliminary study about tree selection and configuration of Yunyong ecological forest. Guangdong Forestry Science and Technology, 29(5), 1-6. (in Chinese with English abstract) |
[盘李军, 王明怀, 冼干标, 王敏, 唐洪辉, 陈建新, 张谦 (2013) 云勇生态公益林树种选择及配置研究初报. 广东林业科技, 29(5), 1-6.] | |
[32] | Pan LJ, Xu H, Li YP, Ye XP, Tan S, Wu HJ, He ZL (2023) The effects of configuration modes of different trees on the restoration of species diversity and functional diversity in planted forests. Forestry and Environmental Science, 39(1), 55-64. (in Chinese with English abstract) |
[盘李军, 许涵, 李艳朋, 叶小萍, 谭莎, 吴华俊, 何增丽 (2023) 不同树种配置模式对人工林物种和功能多样性恢复的影响. 林业与环境科学, 39(1), 55-64.] | |
[33] | Peng SL, Fang W (1995) Studies on dynamics of Castanopsis chinensis and Schima superba population in forest succession of Dinghushan Mountains. Acta Phytoecologica Sinica, 19, 311-318. (in Chinese with English abstract) |
[彭少麟, 方炜 (1995) 鼎湖山植被演替过程中椎栗和荷木种群的动态. 植物生态学报, 19, 311-318.] | |
[34] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[35] |
Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 10, 2555.
DOI PMID |
[36] | Petter G, Wagner K, Wanek W, Sánchez Delgado EJ, Zotz G, Cabral JS, Kreft H (2016) Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology, 30, 188-198. |
[37] | Price J, Tamme R, Gazol A, de Bello F, Takkis K, Uria-Diez J, Kasari L, Pärtel M (2017) Within-community environmental variability drives trait variability in species-rich grasslands. Journal of Vegetation Science, 28, 303-312. |
[38] | Qiang W, He LL, Zhang Y, Liu B, Liu Y, Liu QH, Pang XY (2021) Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in Southwest China. Catena, 202, 105251. |
[39] | R Core Team (2017) R, A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/. (accessed on 2023-07-18) |
[40] |
Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486-497.
DOI PMID |
[41] | Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216. |
[42] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li YZ, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI PMID |
[43] | Song GM, Han TT, Hong L, Zhang LL, Li XB, Ren H (2018) Advances in the studies of plant functional traits during succession. Ecological Science, 37, 207-213. (in Chinese with English abstract) |
[宋光满, 韩涛涛, 洪岚, 张玲玲, 李晓波, 任海 (2018) 演替过程中植物功能性状研究进展. 生态科学, 37, 207-213.] | |
[44] | Sun HZ, Wang XP, Zhang SB, Wu P, Yang L (2021) Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest. Chinese Journal of Plant Ecology, 45, 594-605. (in Chinese with English abstract) |
[孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾 (2021) 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素. 植物生态学报, 45, 594-605.] | |
[45] |
Umaña MN, Zhang CC, Cao M, Lin LX, Swenson NG (2015) Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329-1337.
DOI PMID |
[46] |
Vaieretti MV, Díaz S, Vile D, Garnier E (2007) Two measurement methods of leaf dry matter content produce similar results in a broad range of species. Annals of Botany, 99, 955-958.
PMID |
[47] | Wang MJ, Rong L, Li TT, Wang Q, Ye TM (2021) Studies on leaf functional traits of nine woody lianas in the karst area of Central Guizhou Province. Journal of Tropical and Subtropical Botany, 29, 455-464. (in Chinese with English abstract) |
[王梦洁, 容丽, 李婷婷, 王琪, 叶天木 (2021) 黔中喀斯特9种木质藤本叶功能性状研究. 热带亚热带植物学报, 29, 455-464.] | |
[48] | Wang R, Wang Q, Liu C, Kou L, Zhao N, Xu Z, Zhang S, Yu GR, He NP (2018) Changes in trait and phylogenetic diversity of leaves and absorptive roots from tropical to boreal forests. Plant and Soil, 432, 389-401. |
[49] | Wei TY, Simko V, Levy M, Xie YH, Jin Y, Zemla J, Freidank M, Cai J, Protivinsky T (2021) R package ‘corrplot’: Visualization of a correlation matrix. R Package Version 0.92, https://cran.r-project.org/web/packages/corrplot/index.html. (accessed on 2023-07-18) |
[50] | Wickham H (2016) ggplot2, Elegant Graphics for Data Analysis. Springer-Verlag, New York. |
[51] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[52] | Wu TH, Long CL, Xiong L, Li J, Liu Q (2023) Relationship between plant leaf functional traits and soil factors at different succession stages in karst forest of Maolan. Guihaia, 42, 463-472. (in Chinese with English abstract) |
[吴陶红, 龙翠玲, 熊玲, 李娟, 刘奇 (2023) 茂兰喀斯特森林不同演替阶段植物叶片功能性状与土壤因子的关系. 广西植物, 42, 463-472.] | |
[53] | Xue CL, Chen XH, Xue LR, Zhang HQ, Chen JP, Li DD (2023) Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in Bairin Left Banner, China. Science of the Total Environment, 855, 158834. |
[54] | Ye XP, Pan LJ, Xu H, Li YP, Xian WG, Tan JB, Li Z, Ye BJ (2022) Study on the dynamic changes of species composition and diversity of the rebuilt ecological public welfare forests. Forestry and Environmental Science, 38(5),105-112. (in Chinese with English abstract) |
[叶小萍, 盘李军, 许涵, 李艳朋, 冼伟光, 谭健彬, 李政, 叶伯坚 (2022) 生态公益林改造后物种组成和多样性动态变化研究. 林业与环境科学, 38(5), 105-112.] | |
[55] | Zhang H, Sun M, Wen YX, Tong R, Wang G, Wu QQ, Li Y, Wu TG (2022) The effects of stand age on leaf N : P cannot be neglected: A global synthesis. Forest Ecology and Management, 518, 120294. |
[56] | Zhang HW, Ma JY, Sun W, Chen FH (2010) Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China. Acta Ecologica Sinica, 30, 5747-5758. (in Chinese with English abstract) |
[张慧文, 马剑英, 孙伟, 陈发虎 (2010) 不同海拔天山云杉叶功能性状及其与土壤因子的关系. 生态学报, 30, 5747-5758.] | |
[57] | Zhang J, Fu BJ, Stafford-Smith M, Wang S, Zhao WW (2021) Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology & Evolution, 5, 10-13. |
[58] |
Zhang RY, Li YP, Ni YL, Gui XJ, Lian JY, Ye WH (2019) Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 27, 1279-1290. (in Chinese with English abstract)
DOI |
[张入匀, 李艳朋, 倪云龙, 桂旭君, 练琚愉, 叶万辉 (2019) 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异. 生物多样性, 27, 1279-1290.]
DOI |
|
[59] | Zhang ZM, Yu SX (2018) Potential tradeoffs between intraspecific and interspecific trait variations along an environmental gradient in a subtropical forest. Journal of Forestry Research, 29, 1731-1740. |
[1] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[2] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[3] | 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,倪红伟. 五大连池火山色木槭叶功能性状特征[J]. 生物多样性, 2019, 27(3): 286-296. |
[4] | 张入匀, 李艳朋, 倪云龙, 桂旭君, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异[J]. 生物多样性, 2019, 27(12): 1279-1290. |
[5] | 王邵军, 王红, 李霁航. 热带森林不同演替阶段蚂蚁巢穴的分布特征及其影响因素[J]. 生物多样性, 2016, 24(8): 916-921. |
[6] | 石胜友, 杨季冬, 王周平, 李旭光. 缙云山风灾迹地人工混交林生态恢复过程中物种多样性研究[J]. 生物多样性, 2002, 10(3): 274-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn