生物多样性 ›› 2023, Vol. 31 ›› Issue (10): 23152. DOI: 10.17520/biods.2023152
高瑞贺1,2,*(), 范世明1,2, 董江海1,2, 李蓉姣1,2, 张志伟1,2
收稿日期:
2023-05-15
接受日期:
2023-07-03
出版日期:
2023-10-20
发布日期:
2023-11-23
通讯作者:
*E-mail: gaoruihe1989@163.com
基金资助:
Ruihe Gao1,2,*(), Shiming Fan1,2, Jianghai Dong1,2, Rongjiao Li1,2, Zhiwei Zhang1,2
Received:
2023-05-15
Accepted:
2023-07-03
Online:
2023-10-20
Published:
2023-11-23
Contact:
*E-mail: gaoruihe1989@163.com
摘要:
为阐明关帝山垂直海拔梯度上昆虫功能群变化特征及环境因子对其空间分布格局的影响, 本研究在关帝山林区海拔1,600-2,800 m范围内设置7个样地, 于2020年和2021年的7-8月采用扫网法和陷阱法采集昆虫标本, 通过单因素方差分析比较不同海拔昆虫群落多样性和功能群特征差异, 利用三维主成分分析和Jaccard相似性系数比较不同海拔昆虫功能群相似性, 运用Pearson相关系数分析和冗余分析以明确环境因素对昆虫群落功能群垂直分布格局的影响。研究结果表明: 在关帝山不同海拔样地中共调查到9,321头昆虫, 隶属11目89科198种, 不同功能群种群的数量在海拔梯度上具有明显的分化特征; 海拔梯度亦可显著导致昆虫群落物种多样性分化, 这种差异性可能源于海拔引起的生境异质性; 不同海拔样地间昆虫群落Jaccard相似性系数为0.13-0.41, 均表现为极不相似或中等不相似; 此外, 本研究选取的19个环境因子均会影响昆虫功能群的空间分布, 其中环境温度和土壤P/N (速效磷与速效氮的比值)是决定昆虫功能群空间分布格局的最重要环境因子。本研究结果可为关帝山昆虫群落及功能群的监测和保护提供理论依据。
高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟 (2023) 关帝山不同海拔昆虫功能群特征及分布格局. 生物多样性, 31, 23152. DOI: 10.17520/biods.2023152.
Ruihe Gao, Shiming Fan, Jianghai Dong, Rongjiao Li, Zhiwei Zhang (2023) Characteristics and vertical distribution of insect functional groups along an altitude gradient in Guandi Mountains. Biodiversity Science, 31, 23152. DOI: 10.17520/biods.2023152.
海拔 Altitude (m) | 优势植物 Dominant plants | 坡度 Slope | 植被盖度 Vegetation coverage (%) | 乔木密度 Tree density (tree/ha) | 乔木胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) |
---|---|---|---|---|---|---|
1,600 | 辽东栎 Quercus liaotungensis | 26.16° ± 1.41° | 82.67 ± 2.52 | 1,058.33 ± 101.04 | 9.36 ± 2.00 | 9.12 ± 2.55 |
1,800 | 油松 Pinus tabuliformis | 21.25° ± 2.02° | 81.67 ± 10.12 | 741.67 ± 128.29 | 17.44 ± 0.65 | 13.67 ± 2.43 |
2,000 | 山杨、白桦 Populus davidiana, Betula platyphylla | 12.93° ± 5.20° | 73.50 ± 2.12 | 516.67 ± 14.43 | 17.15 ± 3.57 | 12.62 ± 1.55 |
2,200 | 云杉 Picea asperata | 18.62° ± 6.25° | 82.33 ± 4.04 | 816.67 ± 80.36 | 16.98 ± 2.73 | 14.89 ± 1.80 |
2,400 | 华北落叶松、云杉 Larix principis-rupprechtii, Picea asperata | 23.33° ± 4.16° | 77.67 ± 2.08 | 483.33 ± 38.19 | 30.82 ± 4.95 | 18.31 ± 3.00 |
2,600 | 华北落叶松 Larix principis-rupprechtii | 26.36° ± 6.53° | 76.33 ± 1.53 | 491.67 ± 87.80 | 25.38 ± 2.46 | 16.54 ± 2.78 |
2,800 | 亚高山草甸 Subalpine meadow | 17.16° ± 3.28° | 92.67 ± 1.56 |
表1 关帝山不同海拔典型群落林分特征
Table 1 Stand characteristics of typical communities along the gradient in the Guandi Mountains
海拔 Altitude (m) | 优势植物 Dominant plants | 坡度 Slope | 植被盖度 Vegetation coverage (%) | 乔木密度 Tree density (tree/ha) | 乔木胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) |
---|---|---|---|---|---|---|
1,600 | 辽东栎 Quercus liaotungensis | 26.16° ± 1.41° | 82.67 ± 2.52 | 1,058.33 ± 101.04 | 9.36 ± 2.00 | 9.12 ± 2.55 |
1,800 | 油松 Pinus tabuliformis | 21.25° ± 2.02° | 81.67 ± 10.12 | 741.67 ± 128.29 | 17.44 ± 0.65 | 13.67 ± 2.43 |
2,000 | 山杨、白桦 Populus davidiana, Betula platyphylla | 12.93° ± 5.20° | 73.50 ± 2.12 | 516.67 ± 14.43 | 17.15 ± 3.57 | 12.62 ± 1.55 |
2,200 | 云杉 Picea asperata | 18.62° ± 6.25° | 82.33 ± 4.04 | 816.67 ± 80.36 | 16.98 ± 2.73 | 14.89 ± 1.80 |
2,400 | 华北落叶松、云杉 Larix principis-rupprechtii, Picea asperata | 23.33° ± 4.16° | 77.67 ± 2.08 | 483.33 ± 38.19 | 30.82 ± 4.95 | 18.31 ± 3.00 |
2,600 | 华北落叶松 Larix principis-rupprechtii | 26.36° ± 6.53° | 76.33 ± 1.53 | 491.67 ± 87.80 | 25.38 ± 2.46 | 16.54 ± 2.78 |
2,800 | 亚高山草甸 Subalpine meadow | 17.16° ± 3.28° | 92.67 ± 1.56 |
海拔 Altitude (m) | 植食性昆虫 Herbivorous insects | 肉食性昆虫 Sarcophagous insects | 腐食性类群 Saprophagous insects | 杂食性昆虫 Omnivorous insects | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | |
1,600 | 22 | 21.78 | 367 | 13.65 | 27 | 46.55 | 606 | 27.82 | 11 | 47.83 | 399 | 26.72 | 10 | 62.50 | 425 | 14.36 |
1,800 | 11 | 10.89 | 229 | 8.52 | 12 | 20.69 | 336 | 15.43 | 8 | 34.78 | 255 | 17.08 | 9 | 56.25 | 610 | 20.62 |
2,000 | 11 | 10.89 | 130 | 4.83 | 21 | 36.21 | 372 | 17.08 | 7 | 30.43 | 288 | 19.29 | 9 | 56.25 | 735 | 24.84 |
2,200 | 16 | 15.84 | 447 | 16.62 | 15 | 25.86 | 273 | 12.53 | 8 | 34.78 | 209 | 14.00 | 4 | 25.00 | 277 | 9.36 |
2,400 | 13 | 12.87 | 206 | 7.66 | 11 | 18.97 | 202 | 9.27 | 7 | 30.43 | 144 | 9.65 | 5 | 31.25 | 487 | 16.46 |
2,600 | 18 | 17.82 | 308 | 11.45 | 13 | 22.41 | 208 | 9.55 | 5 | 21.74 | 135 | 9.04 | 9 | 56.25 | 193 | 6.52 |
2,800 | 83 | 82.18 | 1,004 | 37.34 | 27 | 46.55 | 181 | 8.31 | 12 | 52.17 | 63 | 4.22 | 6 | 37.50 | 232 | 7.84 |
总计 Total | 101 | 2,691 | 100 | 58 | 2,178 | 100 | 23 | 1,493 | 100 | 16 | 2,959 | 100 |
表2 关帝山不同海拔梯度昆虫功能群结构特征
Table 2 Structural characteristics of insect functional groups at different altitudes in Guandi Mountains
海拔 Altitude (m) | 植食性昆虫 Herbivorous insects | 肉食性昆虫 Sarcophagous insects | 腐食性类群 Saprophagous insects | 杂食性昆虫 Omnivorous insects | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | |
1,600 | 22 | 21.78 | 367 | 13.65 | 27 | 46.55 | 606 | 27.82 | 11 | 47.83 | 399 | 26.72 | 10 | 62.50 | 425 | 14.36 |
1,800 | 11 | 10.89 | 229 | 8.52 | 12 | 20.69 | 336 | 15.43 | 8 | 34.78 | 255 | 17.08 | 9 | 56.25 | 610 | 20.62 |
2,000 | 11 | 10.89 | 130 | 4.83 | 21 | 36.21 | 372 | 17.08 | 7 | 30.43 | 288 | 19.29 | 9 | 56.25 | 735 | 24.84 |
2,200 | 16 | 15.84 | 447 | 16.62 | 15 | 25.86 | 273 | 12.53 | 8 | 34.78 | 209 | 14.00 | 4 | 25.00 | 277 | 9.36 |
2,400 | 13 | 12.87 | 206 | 7.66 | 11 | 18.97 | 202 | 9.27 | 7 | 30.43 | 144 | 9.65 | 5 | 31.25 | 487 | 16.46 |
2,600 | 18 | 17.82 | 308 | 11.45 | 13 | 22.41 | 208 | 9.55 | 5 | 21.74 | 135 | 9.04 | 9 | 56.25 | 193 | 6.52 |
2,800 | 83 | 82.18 | 1,004 | 37.34 | 27 | 46.55 | 181 | 8.31 | 12 | 52.17 | 63 | 4.22 | 6 | 37.50 | 232 | 7.84 |
总计 Total | 101 | 2,691 | 100 | 58 | 2,178 | 100 | 23 | 1,493 | 100 | 16 | 2,959 | 100 |
图4 关帝山昆虫功能群种群数量沿海拔梯度的三维主成分分析
Fig. 4 Three dimensions principal component analysis of insect functional group populations along the altitude gradient in Guandi Mountains
海拔 Altitude (m) | 1,800 | 2,000 | 2,200 | 2,400 | 2,600 | 2,800 |
---|---|---|---|---|---|---|
1,600 | 0.34 | 0.31 | 0.35 | 0.38 | 0.37 | 0.14 |
1,800 | 0.29 | 0.41 | 0.29 | 0.39 | 0.16 | |
2,000 | 0.28 | 0.29 | 0.26 | 0.14 | ||
2,200 | 0.27 | 0.38 | 0.17 | |||
2,400 | 0.35 | 0.13 | ||||
2,600 | 0.18 |
表3 关帝山不同海拔梯度昆虫群落Jaccard相似性系数
Table 3 Jaccard similarity index of insect community along the altitude gradient in Guandi Mountains
海拔 Altitude (m) | 1,800 | 2,000 | 2,200 | 2,400 | 2,600 | 2,800 |
---|---|---|---|---|---|---|
1,600 | 0.34 | 0.31 | 0.35 | 0.38 | 0.37 | 0.14 |
1,800 | 0.29 | 0.41 | 0.29 | 0.39 | 0.16 | |
2,000 | 0.28 | 0.29 | 0.26 | 0.14 | ||
2,200 | 0.27 | 0.38 | 0.17 | |||
2,400 | 0.35 | 0.13 | ||||
2,600 | 0.18 |
图5 关帝山不同海拔梯度生境昆虫功能群与环境因子的Pearson相关性热图。T: 温度; RH: 相对湿度; pH: 土壤pH; EC: 土壤电导率; AN: 土壤速效氮; AP: 土壤速效磷; AK: 土壤速效钾; P/N: 速效磷与速效氮的比值; N/K: 速效氮与速效钾的比值; P/K: 速效磷与速效钾的比值; BD: 土壤容重; MWHC: 土壤最大持水量; CWHC: 土壤毛管持水量; NP: 土壤非毛管孔隙度; CP: 土壤毛管孔隙度; TSP: 土壤总孔隙度。右侧刻度条中的数值表示Pearson相关系数; 红色椭圆表示正相关, 蓝色椭圆表示负相关, 颜色越深表示相关性越强。* P < 0.05, ** P < 0.01。
Fig. 5 Heat map of Pearson correlation coefficients between insect functional groups and environmental factors in the Guandi Mountains. The values in the scale bar represents the correlation coefficients. T, Temperature; RH, Relative humidity; pH, Soil pH; EC, Electrical conductivity; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; P/N, The ratio of AP to AN; N/K, The ration of AN to AK; P/K, The ratio of AP to AK. BD, Bulk density; MWHC, Maximum water holding capacity; CWHC, Capillary water holding capacity; NP, Non-capillary porosity; CP, Capillary porosity; TSP, Total soil porosity. The color of the circle indicates the direction of the correlation, where red indicates positive correlation and blue indicates negative correlation, and the darker the color indicates stronger correlation. * P < 0.05, ** P < 0.01.
图6 关帝山不同海拔梯度生境昆虫功能群与环境因子的冗余分析(RDA)。Herbivorous: 植食性昆虫; Sarcophagous: 肉食性昆虫; Saprophagous: 腐食性昆虫; Omnivorous: 杂食性昆虫; T: 温度; RH: 相对湿度; pH: 土壤pH; EC: 土壤电导率; AN: 土壤速效氮; AP: 土壤速效磷; AK: 土壤速效钾; P/N: 速效磷与速效氮的比值; N/K: 速效氮与速效钾的比值; P/K: 速效磷与速效钾的比值; BD: 土壤容重; MWHC: 土壤最大持水量; CWHC: 土壤毛管持水量; NP: 土壤非毛管孔隙度; CP: 土壤毛管孔隙度; TSP: 土壤总孔隙度。
Fig. 6 Redundancy analysis of insect functional groups and environmental factors along the altitude gradient in Guandi Mountains. T, Temperature; RH, Relative humidity; pH, Soil pH; EC, Electrical conductivity; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; P/N, The ratio of AP to AN; N/K, The ration of AN to AK; P/K, The ratio of AP to AK; BD, Bulk density; MWHC, Maximum water holding capacity; CWHC, Capillary water holding capacity; NP, Non-capillary porosity; CP, Capillary porosity; TSP, Total soil porosity.
环境变量 Variables | RDA 1得分 RDA 1 score | RDA 2得分 RDA 2 score | R2 | P |
---|---|---|---|---|
温度 Temperature (T) | 0.17 | 0.66 | 0.329* | 0.028 |
相对湿度 Relative humidity (RH) | -0.30 | -0.35 | 0.173 | 0.176 |
土壤pH Soil pH | 0.38 | -0.06 | 0.119 | 0.316 |
电导率 Electric conductivity (EC) | -0.17 | -0.13 | 0.039 | 0.694 |
速效氮 Available nitrogen (AN) | -0.25 | -0.05 | 0.055 | 0.589 |
速效磷 Available phosphorus (AP) | -0.18 | -0.09 | 0.033 | 0.731 |
速效钾 Available potassium (AK) | -0.20 | -0.10 | 0.043 | 0.666 |
速效磷与速效氮的比值 The ratio of AP to AN (P/N) | -0.61 | 0.21 | 0.320* | 0.038 |
速效氮与速效钾的比值 The ratio of AN to AK (N/K) | -0.12 | 0.23 | 0.044 | 0.648 |
速效磷与速效钾的比值 The ratio of AP to AK (P/K) | 0.18 | 0.18 | 0.053 | 0.617 |
土壤容重 Soil bulk density (BD) | -0.08 | 0.39 | 0.106 | 0.357 |
土壤最大持水量 Soil maximum water holding capacity (MWHC) | 0.09 | -0.14 | 0.019 | 0.86 |
土壤毛管持水量 Soil capillary water holding capacity (CWHC) | 0.09 | -0.16 | 0.022 | 0.844 |
土壤非毛管孔隙度 Soil noncapillary porosity (NP) | 0.05 | 0.07 | 0.007 | 0.964 |
土壤毛管孔隙度 Soil capillary porosity (CP) | 0.07 | -0.21 | 0.032 | 0.76 |
土壤总孔隙度 Total soil porosity (TSP) | 0.08 | -0.19 | 0.027 | 0.792 |
表4 环境因子在RDA轴上得分及其对昆虫功能群分布的影响
Table 4 The score of environmental factors on the RDA axis and their effects on the distribution of insect functional groups
环境变量 Variables | RDA 1得分 RDA 1 score | RDA 2得分 RDA 2 score | R2 | P |
---|---|---|---|---|
温度 Temperature (T) | 0.17 | 0.66 | 0.329* | 0.028 |
相对湿度 Relative humidity (RH) | -0.30 | -0.35 | 0.173 | 0.176 |
土壤pH Soil pH | 0.38 | -0.06 | 0.119 | 0.316 |
电导率 Electric conductivity (EC) | -0.17 | -0.13 | 0.039 | 0.694 |
速效氮 Available nitrogen (AN) | -0.25 | -0.05 | 0.055 | 0.589 |
速效磷 Available phosphorus (AP) | -0.18 | -0.09 | 0.033 | 0.731 |
速效钾 Available potassium (AK) | -0.20 | -0.10 | 0.043 | 0.666 |
速效磷与速效氮的比值 The ratio of AP to AN (P/N) | -0.61 | 0.21 | 0.320* | 0.038 |
速效氮与速效钾的比值 The ratio of AN to AK (N/K) | -0.12 | 0.23 | 0.044 | 0.648 |
速效磷与速效钾的比值 The ratio of AP to AK (P/K) | 0.18 | 0.18 | 0.053 | 0.617 |
土壤容重 Soil bulk density (BD) | -0.08 | 0.39 | 0.106 | 0.357 |
土壤最大持水量 Soil maximum water holding capacity (MWHC) | 0.09 | -0.14 | 0.019 | 0.86 |
土壤毛管持水量 Soil capillary water holding capacity (CWHC) | 0.09 | -0.16 | 0.022 | 0.844 |
土壤非毛管孔隙度 Soil noncapillary porosity (NP) | 0.05 | 0.07 | 0.007 | 0.964 |
土壤毛管孔隙度 Soil capillary porosity (CP) | 0.07 | -0.21 | 0.032 | 0.76 |
土壤总孔隙度 Total soil porosity (TSP) | 0.08 | -0.19 | 0.027 | 0.792 |
[1] |
Acharya BK, Vijayan L (2015) Butterfly diversity along the elevation gradient of Eastern Himalaya. Ecological Research, 30, 909-919.
DOI URL |
[2] |
Aranda R, Graciolli G (2015) Spatial-temporal distribution of the Hymenoptera in the Brazilian savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation, 19, 1173-1187.
DOI URL |
[3] |
Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484.
DOI PMID |
[4] |
Beirão Marina V, Neves Frederico S, Wilson FG (2020) Climate and plant structure determine the spatiotemporal butterfly distribution on a tropical mountain. Biotropica, 53, 191-200.
DOI URL |
[5] |
Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
PMID |
[6] | Cai WZ, Pang XF, Hua BZ, Liang GW, Song DL (2011) General Entomology. China Agricultural University Press, Beijing. (in Chinese) |
[彩万志, 庞雄飞, 花保祯, 梁广文, 宋敦伦 (2011) 普通昆虫学. 中国农业大学出版社, 北京.] | |
[7] | Chen ZM, Huang XD, Zhang M, Li ZS, Chang ZM, Long JK (2021) Study on insect community diversity of shrub grassland in karst plateau mountainous area, Guizhou, China. Journal of Environmental Entomology, 43, 1178-1189. (in Chinese with English abstract) |
[陈志敏, 黄秀东, 张茂, 李中森, 常志敏, 龙见坤 (2021) 喀斯特高原山区灌丛草地昆虫群落多样性研究. 环境昆虫学报, 43, 1178-1189.] | |
[8] |
Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
DOI URL |
[9] | Dong X, Li YH, Xin ZM, Duan RB, Yao B, Bao YF, Zhang ZG, Liu Y (2021) Patterns of altitudinal distribution of species diversity of desert gobi shrub communities in west Hexi Corridor of China. Scientia Silvae Sinicae, 57(2), 168-178. (in Chinese with English abstract) |
[董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源 (2021) 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局. 林业科学, 57(2), 168-178.] | |
[10] |
Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369-392.
DOI URL |
[11] | Gao X, Zhang LM, Zhang XM, Yang J, Chen GH, Shi AX, Song JX, Li Q (2014) Analysis of differences in insect communities at different altitudes in Zanthoxylum bungeanum gardens, Yunnan, China. Acta Ecologica Sinica, 34, 2085-2094. (in Chinese with English abstract) |
[高鑫, 张立敏, 张晓明, 杨洁, 陈国华, 石安宪, 宋家雄, 李强 (2014) 云南花椒园中昆虫群落特征的海拔间差异分析. 生态学报, 34, 2085-2094.] | |
[12] | Guo QF, Fei SL, Potter KM, Liebhold AM, Wen J (2019) Tree diversity regulates forest pest invasion. Proceedings of the National Academy of Sciences, USA, 116, 7382-7386. |
[13] | Han YF (1997) Economic Insect Fauna of China. Science Press, Beijing. (in Chinese) |
[韩运发 (1997) 中国经济昆虫志. 科学出版社, 北京.] | |
[14] |
Hamer KC, Hill JK, Benedick S, Mustaffa N, Chey VK, Maryati M (2006) Diversity and ecology of carrion- and fruit-feeding butterflies in Bornean rain forest. Journal of Tropical Ecology, 22, 25-33.
DOI URL |
[15] |
Han YR, Xue QQ, Song HJ, Qi JY, Gao RH, Cui SP, Men LN, Zhang ZW (2022) Diversity and influencing factors of flower-visiting insects in the Yanshan area. Biodiversity Science, 30, 21448. (in Chinese with English abstract)
DOI |
[韩艺茹, 薛琪琪, 宋厚娟, 祁靖宇, 高瑞贺, 崔绍朋, 门丽娜, 张志伟 (2022) 燕山地区访花昆虫多样性及其影响因子. 生物多样性, 30, 21448.]
DOI |
|
[16] |
Hodkinson ID (2005) Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80, 489-513.
DOI PMID |
[17] |
Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50.
DOI URL |
[18] |
Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. Forest Research Papers, 74, 345-355.
DOI URL |
[19] |
Jobidon R, Cyr G, Thiffault N (2004) Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. Forest Ecology and Management, 198, 209-221.
DOI URL |
[20] |
Keil P, Konvicka M (2005) Local species richness of Central European hoverflies (Diptera: Syrphidae): A lesson taught by local faunal lists. Diversity and Distributions, 11, 417-426.
DOI URL |
[21] |
Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[22] |
Laiolo P, Pato J, Obeso JR (2018) Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21, 1022-1032.
DOI PMID |
[23] |
Laossi KR, Barot S, Carvalho D, Desjardins T, Lavelle P, Martins M, Mitja D, Carolina Rendeiro A, Rousseau G, Sarrazin M, Velasquez E, Grimaldi M (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia, 51, 397-407.
DOI URL |
[24] | Li XY, Yang YC, He ZS, Yang GJ (2020) Diversity of butterflies community and its environmental factors in Helan Mountain Nature Reserve, Ningxia. Journal of Environmental Entomology, 42, 660-673. (in Chinese with English abstract) |
[李欣芸, 杨益春, 贺泽帅, 杨贵军 (2020) 宁夏贺兰山自然保护区蝴蝶群落多样性及其环境影响因子. 环境昆虫学报, 42, 660-673.] | |
[25] | Liang W, Ma YH, Chen LH, Wei HY (2022) Research progress in the influence of host plants on the selection behaviors of herbivorous insects. Biological Disaster Science, 45, 299-304. (in Chinese with English abstract) |
[梁薇, 麻亚辉, 陈丽慧, 魏洪义 (2022) 寄主植物对植食性昆虫选择行为影响的研究进展. 生物灾害科学, 45, 299-304.] | |
[26] |
Lin YY, Wang YZ, Feng YL, Zhao WZ, Gao JW, Liu JL (2022) Dynamic change of ground-dwelling beetle community in a gobi desert of the middle of Hexi Corridor and its influencing factors. Biodiversity Science, 30, 22343. (in Chinese with English abstract)
DOI |
[林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮 (2022) 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素. 生物多样性, 30, 22343.]
DOI |
|
[27] | Lu HH, Huang SC, Liu WP, Deng Y, Zhu HX, Zhao KX, Wei W, Yang WH, Huang DY (2022) Structure characteristics and diversity analysis of pollinators of Olea europaea. Acta Ecologica Sinica, 42, 10329-10337. (in Chinese with English abstract) |
[陆欢欢, 黄思程, 刘文平, 邓煜, 朱恒星, 赵凯旋, 魏玮, 杨文华, 黄敦元 (2022) 油橄榄传粉昆虫群落结构特征及多样性分析. 生态学报, 42, 10329-10337.] | |
[28] |
Luo JY, Zhang S, Zhu XZ, Wang CY, Lü LM, Li CH, Cui JJ (2016) Insect community diversity in transgenic Bt cotton in saline and dry soils. Biodiversity Science, 24, 332-340. (in Chinese with English abstract)
DOI URL |
[雒珺瑜, 张帅, 朱香镇, 王春义, 吕丽敏, 李春花, 崔金杰 (2016) 盐碱旱地转基因抗虫棉田昆虫群落多样性. 生物多样性, 24, 332-340.]
DOI |
|
[29] | Ma KP (1994) Measurement of biotic community diversity. I. α diversity (Part 1). Chinese Biodiversity, 2, 162-168. (in Chinese) |
[马克平 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(上). 生物多样性, 2, 162-168.] | |
[30] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[31] |
Maguire DY, James PMA, Buddle CM, Bennett EM (2015) Landscape connectivity and insect herbivory: A framework for understanding tradeoffs among ecosystem services. Global Ecology and Conservation, 4, 73-84.
DOI URL |
[32] | Margalef R (1958) Information theory in ecology. Geography, 3, 36-71. |
[33] |
Maveety SA, Browne RA, Erwin TL (2013) Carabid beetle diversity and community composition as related to altitude and seasonality in Andean forests. Studies on Neotropical Fauna and Environment, 48, 165-174.
DOI URL |
[34] |
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity effects on insect herbivores and their natural enemies: Current thinking, recent findings, and future directions. Current Opinion in Insect Science, 14, 1-7.
DOI PMID |
[35] |
Nahmani J, Lavelle P, Rossi JP (2006) Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biology and Biochemistry, 38, 385-396.
DOI URL |
[36] |
Neves FS, Silva JO, Espírito-Santo MM, Fernandes GW (2014) Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica, 46, 14-24.
DOI URL |
[37] | Pielou EC (1975) Ecological Diversity. John Wiley & Sons, New Jersey. |
[38] |
Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: Evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 14, 476-483.
DOI PMID |
[39] |
Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology, 28, 46-54.
DOI URL |
[40] |
Ricklefs RE, Marquis RJ (2012) Species richness and niche space for temperate and tropical folivores. Oecologia, 168, 213-220.
DOI PMID |
[41] |
Savary S, Horgan F, Willocquet L, Heong KL (2012) A review of principles for sustainable pest management in rice. Crop Protection, 32, 54-63.
DOI URL |
[42] |
Shao XL, Zhang Q, Yang XT (2021) Spatial patterns of insect herbivory within a forest landscape: The role of soil type and forest stratum. Forest Ecosystems, 8, 69.
DOI |
[43] |
Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI PMID |
[44] | Stiegel S, Entling MH, Mantilla-Contreras J (2017) Reading the leaves’ palm: Leaf traits and herbivory along the microclimatic gradient of forest layers. PLoS ONE, 12, e0169741. |
[45] |
Wang XW, Müller J, An LL, Ji LZ, Liu Y, Wang XG, Hao ZQ (2014) Intra-annual variations in abundance and species composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 18, 85-98.
DOI URL |
[46] |
Wei HY, Chen K, Wang BX (2020) The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China. Biodiversity Science, 28, 504-514. (in Chinese with English abstract)
DOI |
[魏慧玉, 陈凯, 王备新 (2020) 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性. 生物多样性, 28, 504-514.]
DOI |
|
[47] |
Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251.
DOI URL |
[48] | Yang XZ, Yuan ML (2019) Effect of grazing on insect communities in grassland ecosystems: Research status and progress. Pratacultural Science, 36, 2937-2951. (in Chinese with English abstract) |
[杨兴卓, 袁明龙 (2019) 放牧对天然草地昆虫群落的研究现状及进展. 草业科学, 36, 2937-2951.] | |
[49] | Yang YC, Yang GJ, Wang J (2017) Effects of topographic factors on the distribution pattern of carabid species diversity in the Helan Mountains, northwestern China. Acta Entomologica Sinica, 60, 1060-1073. (in Chinese with English abstract) |
[杨益春, 杨贵军, 王杰 (2017) 地形对贺兰山步甲群落物种多样性分布格局的影响. 昆虫学报, 60, 1060-1073.]
DOI |
|
[50] |
Zhang C, Li J, Cheng HY, Duan JC, Pan Z (2023) Patterns and environmental drivers of the butterfly diversity in the western region of Qinling Mountains. Biodiversity Science, 31, 22272. (in Chinese with English abstract)
DOI |
[张超, 李娟, 程海云, 段家充, 潘昭 (2023) 秦岭西段地区蝴蝶群落多样性与环境因子相关性. 生物多样性, 31, 22272.]
DOI |
|
[51] | Zhang WW, Li YS (2011) Chinese Insects Illustrated. Chongqing University Press, Chongqing. (in Chinese) |
[张巍巍, 李元胜 (2011) 中国昆虫生态大图鉴. 重庆大学出版社, 重庆.] | |
[52] | Zhang XX (2011) Insect Ecology and Forecast. China Agricuture Press, Beijing. (in Chinese) |
[张孝羲 (2011) 昆虫生态及预测预报. 中国农业出版社, 北京.] | |
[53] |
Zhang Y, Feng G (2018) Distribution pattern and mechanism of insect species diversity in Inner Mongolia. Biodiversity Science, 26, 701-706. (in Chinese with English abstract)
DOI |
[张宇, 冯刚 (2018) 内蒙古昆虫物种多样性分布格局及其机制. 生物多样性, 26, 701-706.]
DOI |
|
[54] |
Zhang Y, Wang LY, Xiang CL, Duan MC, Zhang ZS (2021) Effects of different grazing intensities on spider diversity in Saihanwula Grassland. Biodiversity Science, 29, 467-476. (in Chinese with English abstract)
DOI |
[张宇, 王露雨, 向昌林, 段美春, 张志升 (2021) 不同放牧强度对赛罕乌拉草原蜘蛛多样性的影响. 生物多样性, 29, 467-476.]
DOI |
|
[55] |
Zhao LJ, Gao RH, Liu JQ, Liu L, Li RJ, Men LN, Zhang ZW (2023) Effects of environmental factors on the spatial distribution pattern and diversity of insect communities along altitude gradients in Guandi Mountain, China. Insects, 14, 224.
DOI URL |
[56] | Zhong YN, Zou Y, Wang SS, Li LK, Li RZ, Xiao NW, Chen FJ (2023) Investigation and analysis of the species and community diversity of insects in different types of habitats in Beijing-Tianjin-Hebei area of Taihang Mountain. Journal of Environmental Entomology, 45, 285-292. (in Chinese with English abstract) |
[钟燕妮, 邹言, 王诗诗, 李立坤, 李润钊, 肖能文, 陈法军 (2023) 京津冀太行山片区不同生境昆虫种类和群落多样性调查与分析. 环境昆虫学报, 45, 285-292.] | |
[57] | Zhou LY, Ding SY, Lu XL, Liu YM (2020) Effects of anthropogenic disturbance on species diversity and niche of dominant group in pollinators community. Acta Ecologica Sinica, 40, 2111-2121. (in Chinese with English abstract) |
[周立垚, 丁圣彦, 卢训令, 刘娅萌 (2020) 人为干扰对传粉昆虫群落物种多样性及其优势类群生态位的影响. 生态学报, 40, 2111-2121.] | |
[58] | Zhou Y (1999) Illustrated Book of Primary Colors of Chinese Butterflies. Henan Science and Technology Press, Zhengzhou. (in Chinese) |
[周尧 (1999) 中国蝴蝶原色图鉴. 河南科学技术出版社, 郑州.] |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[3] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[4] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[5] | 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12): 1570-1580. |
[6] | 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185. |
[7] | 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589. |
[8] | 胡一鸣, 梁健超, 金崑, 丁志锋, 周智鑫, 胡慧建, 蒋志刚. 喜马拉雅山哺乳动物物种多样性垂直分布格局[J]. 生物多样性, 2018, 26(2): 191-201. |
[9] | 郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨. 北热带喀斯特季节性雨林土壤和6个常见树种凋落物的C、N、P化学计量学特征[J]. 生物多样性, 2017, 25(10): 1085-1094. |
[10] | 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1): 3-10. |
[11] | 冯晨光, 童超, 张仁意, 李国刚, 王贺崐元, 汤永涛, 张存芳, 赵凯. 青藏高原东北部边缘高原鳅属鱼类的 多样性与分布格局[J]. 生物多样性, 2017, 25(1): 53-61. |
[12] | 杨阳, 韩杰, 刘晔, 忠永茨仁, 石松林, 斯那此里, 许玥, 应凌霄, 张婉君, 沈泽昊. 三江并流地区干旱河谷植物物种多样性海拔梯度格局比较[J]. 生物多样性, 2016, 24(4): 440-452. |
[13] | 郑智, 龚大洁, 孙呈祥, 李晓军, 李万江. 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释[J]. 生物多样性, 2014, 22(5): 596-607. |
[14] | 刘芳, 李琪, 申聪聪, 褚海燕, 梁文举. 长白山不同海拔梯度裸肉足虫群落分布特征[J]. 生物多样性, 2014, 22(5): 608-617. |
[15] | 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷. 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构[J]. 生物多样性, 2014, 22(4): 438-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn