生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 578-589. DOI: 10.17520/biods.2017194
陶夏秋1, 崔绍朋2,3, 蒋志刚2,3, 初红军4,5, 李娜2,3, 杨道德1,*(), 李春旺2,3,*()
收稿日期:
2018-05-08
接受日期:
2018-05-26
出版日期:
2018-06-20
发布日期:
2018-09-11
通讯作者:
杨道德,李春旺
作者简介:
# 共同第一作者
基金资助:
Xiaqiu Tao1, Shaopeng Cui2,3, Zhigang Jiang2,3, Hongjun Chu4,5, Na Li2,3, Daode Yang1,*(), Chunwang Li2,3,*()
Received:
2018-05-08
Accepted:
2018-05-26
Online:
2018-06-20
Published:
2018-09-11
Contact:
Yang Daode,Li Chunwang
About author:
# Co-first authors
摘要:
中国阿勒泰地区是北半球中纬度地区的特殊区域, 与俄罗斯、哈萨克斯坦、蒙古接壤, 境内有平原、沙漠和山地三大地貌特征。2014-2016年, 我们先后3次对阿勒泰地区爬行动物资源开展了实地调查, 共采集到392号爬行动物标本。经鉴定隶属1目6科16种, 结合文献资料, 共计1目8科23种, 均为古北界物种, 其中中亚型17种, 古北型6种, 表现出中亚亚界与欧洲-西伯利亚亚界间的过渡性质。爬行动物Shannon-Wiener多样性指数、Simpson优势度指数随海拔分布呈带有一个中峰的低海拔高原格局, 在第2海拔段(500-600 m)达到峰值; 均匀度指数总体呈现递增格局, 第15海拔段(1,800-1,900 m)达到最大值; 丰富度则呈现一种波动的递减格局, 峰值在第10海拔段(1,300-1,400 m)。3种环境因子对这种格局的独立解释力较低, 但综合作用的解释力较强, 其中海拔与年均温这两个因子的综合作用对物种多样性影响程度最大。
陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺 (2018) 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局. 生物多样性, 26, 578-589. DOI: 10.17520/biods.2017194.
Xiaqiu Tao, Shaopeng Cui, Zhigang Jiang, Hongjun Chu, Na Li, Daode Yang, Chunwang Li (2018) Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China. Biodiversity Science, 26, 578-589. DOI: 10.17520/biods.2017194.
样区 Sample area | 海拔区间 Altitude range (m) | 经纬度 Longitude and latitude | 物种* Species* |
---|---|---|---|
1 | 1,100-1,200 | 47.96° N, 88.09° E | 捷蜥蜴(2)、极北蝰(2) Lacerta agilis (2), Vipera berus (2) |
2 | 1,300-1,400 | 47.98° N, 88.21° E | 密点麻蜥(3) Eremias multiocellata (3) |
3 | 800-900 | 47.83° N, 88.14° E | 捷蜥蜴(5) Lacerta agilis (5) |
4 | 900-1,000 | 47.89° N, 88.08° E | 快步麻蜥(4) Eremias velox (4) |
5 | 1,100-1,200 | 46.19° N, 90.86° E | 奇台沙蜥(4)、旱地沙蜥(30)、变色沙蜥(2)、密点麻蜥(2) Phrynocephalus grumgrzimailoi (4), Phrynocephalus helioscopus (30), Phrynocephalus versicolor (2), Eremias multiocellata (2) |
6 | 1,200-1,300 | 46.18° N, 90.76° E | 新疆岩蜥(3)、旱地沙蜥(2) Laudakia stoliczkana (3), Phrynocephalus helioscopus (2) |
7 | 500-600 | 47.69° N, 86.82° E | 奇台沙蜥(8)、快步麻蜥(2)、密点麻蜥(4)、捷蜥蜴(2) Phrynocephalus grumgrzimailoi (8), Eremias velox (2), Eremias multiocellata (4), Lacerta agilis (2) |
8 | 400-500 | 47.84° N, 86.67° E | 奇台沙蜥(12) Phrynocephalus grumgrzimailoi (12) |
9 | 400-500 | 47.86° N, 86.14° E | 奇台沙蜥(6)、虫纹麻蜥(1) Phrynocephalus grumgrzimailoi (6), Eremias vermiculata (1) |
10 | 800-900 | 48.34° N, 86.21° E | 捷蜥蜴(8) Lacerta agilis (8) |
11 | 800-900 | 47.49° N, 86.19° E | 捷蜥蜴(6) Lacerta agilis (6) |
12 | 700-800 | 47.75° N, 87.79° E | 捷蜥蜴(4)、黄脊东方蛇(2) Lacerta agilis (4), Orientocoluber spinalis (2) |
13 | 400-500 | 47.42° N, 87.57° E | 旱地沙蜥(6)、敏麻蜥(2) Phrynocephalus helioscopus (6), Eremias arguta (2) |
14 | 600-700 | 46.55° N, 88.27° E | 旱地沙蜥(2)、快步麻蜥(6) Phrynocephalus helioscopus (2), Eremias velox (6) |
15 | 900-1,000 | 46.70° N, 90.83° E | 奇台沙蜥(15)、旱地沙蜥(3) Phrynocephalus grumgrzimailoi (15), Phrynocephalus helioscopus (3) |
16 | 1,200-1,300 | 45.22° N, 89.54° E | 旱地沙蜥(2)、红沙蟒(1) Phrynocephalus helioscopus (2), Eryx miliaris (1) |
17 | 1,300-1,400 | 45.19° N, 89.17° E | 旱地沙蜥(6)、虫纹麻蜥(1)、快步麻蜥(2)、奇台沙蜥(3) Phrynocephalus helioscopus (6), Eremias vermiculata (1), Eremias velox (2), Phrynocephalus grumgrzimailoi (3) |
18 | 900-1,000 | 45.05° N, 89.28° E | 旱地沙蜥(20) Phrynocephalus helioscopus (20) |
19 | 900-1,000 | 45.28° N, 88.82° E | 奇台沙蜥(21) Phrynocephalus grumgrzimailoi (21) |
20 | 900-1,000 | 47.15° N, 89.35° E | 旱地沙蜥(25) Phrynocephalus helioscopus (25) |
21 | 900-1,000 | 46.63° N, 89.99° E | 奇台沙蜥(2)、旱地沙蜥(4) Phrynocephalus grumgrzimailoi (2), Phrynocephalus helioscopus (4) |
22 | 1,700-1,800 | 49.03° N, 87.43° E | 极北蝰(9)、捷蜥蜴(2) Vipera berus (9), Lacerta agilis (2) |
23 | 1,500-1,600 | 48.99° N, 87.31° E | 极北蝰(4)、捷蜥蜴(2)、胎蜥(1) Vipera berus (4), Lacerta agilis (2), Zootoca vivipara (1) |
24 | 1,300-1,400 | 48.65° N, 86.72° E | 敏麻蜥(1)、极北蝰(1)、隐耳漠虎(3) Eremias arguta (1), Vipera berus (1), Alsophylax pipiens (3) |
25 | 500-600 | 47.56° N, 87.05° E | 敏麻蜥(1)、旱地沙蜥(2) Eremias arguta (1), Phrynocephalus helioscopus (2) |
26 | 700-800 | 48.17° N, 87.14° E | 白条锦蛇(1)、旱地沙蜥(3) Elaphe dione (1), Phrynocephalus helioscopus (3) |
表1 阿勒泰地区26个样区爬行动物调查结果
Table 1 Result of reptile survey of 26 sample areas in Altay Prefecture
样区 Sample area | 海拔区间 Altitude range (m) | 经纬度 Longitude and latitude | 物种* Species* |
---|---|---|---|
1 | 1,100-1,200 | 47.96° N, 88.09° E | 捷蜥蜴(2)、极北蝰(2) Lacerta agilis (2), Vipera berus (2) |
2 | 1,300-1,400 | 47.98° N, 88.21° E | 密点麻蜥(3) Eremias multiocellata (3) |
3 | 800-900 | 47.83° N, 88.14° E | 捷蜥蜴(5) Lacerta agilis (5) |
4 | 900-1,000 | 47.89° N, 88.08° E | 快步麻蜥(4) Eremias velox (4) |
5 | 1,100-1,200 | 46.19° N, 90.86° E | 奇台沙蜥(4)、旱地沙蜥(30)、变色沙蜥(2)、密点麻蜥(2) Phrynocephalus grumgrzimailoi (4), Phrynocephalus helioscopus (30), Phrynocephalus versicolor (2), Eremias multiocellata (2) |
6 | 1,200-1,300 | 46.18° N, 90.76° E | 新疆岩蜥(3)、旱地沙蜥(2) Laudakia stoliczkana (3), Phrynocephalus helioscopus (2) |
7 | 500-600 | 47.69° N, 86.82° E | 奇台沙蜥(8)、快步麻蜥(2)、密点麻蜥(4)、捷蜥蜴(2) Phrynocephalus grumgrzimailoi (8), Eremias velox (2), Eremias multiocellata (4), Lacerta agilis (2) |
8 | 400-500 | 47.84° N, 86.67° E | 奇台沙蜥(12) Phrynocephalus grumgrzimailoi (12) |
9 | 400-500 | 47.86° N, 86.14° E | 奇台沙蜥(6)、虫纹麻蜥(1) Phrynocephalus grumgrzimailoi (6), Eremias vermiculata (1) |
10 | 800-900 | 48.34° N, 86.21° E | 捷蜥蜴(8) Lacerta agilis (8) |
11 | 800-900 | 47.49° N, 86.19° E | 捷蜥蜴(6) Lacerta agilis (6) |
12 | 700-800 | 47.75° N, 87.79° E | 捷蜥蜴(4)、黄脊东方蛇(2) Lacerta agilis (4), Orientocoluber spinalis (2) |
13 | 400-500 | 47.42° N, 87.57° E | 旱地沙蜥(6)、敏麻蜥(2) Phrynocephalus helioscopus (6), Eremias arguta (2) |
14 | 600-700 | 46.55° N, 88.27° E | 旱地沙蜥(2)、快步麻蜥(6) Phrynocephalus helioscopus (2), Eremias velox (6) |
15 | 900-1,000 | 46.70° N, 90.83° E | 奇台沙蜥(15)、旱地沙蜥(3) Phrynocephalus grumgrzimailoi (15), Phrynocephalus helioscopus (3) |
16 | 1,200-1,300 | 45.22° N, 89.54° E | 旱地沙蜥(2)、红沙蟒(1) Phrynocephalus helioscopus (2), Eryx miliaris (1) |
17 | 1,300-1,400 | 45.19° N, 89.17° E | 旱地沙蜥(6)、虫纹麻蜥(1)、快步麻蜥(2)、奇台沙蜥(3) Phrynocephalus helioscopus (6), Eremias vermiculata (1), Eremias velox (2), Phrynocephalus grumgrzimailoi (3) |
18 | 900-1,000 | 45.05° N, 89.28° E | 旱地沙蜥(20) Phrynocephalus helioscopus (20) |
19 | 900-1,000 | 45.28° N, 88.82° E | 奇台沙蜥(21) Phrynocephalus grumgrzimailoi (21) |
20 | 900-1,000 | 47.15° N, 89.35° E | 旱地沙蜥(25) Phrynocephalus helioscopus (25) |
21 | 900-1,000 | 46.63° N, 89.99° E | 奇台沙蜥(2)、旱地沙蜥(4) Phrynocephalus grumgrzimailoi (2), Phrynocephalus helioscopus (4) |
22 | 1,700-1,800 | 49.03° N, 87.43° E | 极北蝰(9)、捷蜥蜴(2) Vipera berus (9), Lacerta agilis (2) |
23 | 1,500-1,600 | 48.99° N, 87.31° E | 极北蝰(4)、捷蜥蜴(2)、胎蜥(1) Vipera berus (4), Lacerta agilis (2), Zootoca vivipara (1) |
24 | 1,300-1,400 | 48.65° N, 86.72° E | 敏麻蜥(1)、极北蝰(1)、隐耳漠虎(3) Eremias arguta (1), Vipera berus (1), Alsophylax pipiens (3) |
25 | 500-600 | 47.56° N, 87.05° E | 敏麻蜥(1)、旱地沙蜥(2) Eremias arguta (1), Phrynocephalus helioscopus (2) |
26 | 700-800 | 48.17° N, 87.14° E | 白条锦蛇(1)、旱地沙蜥(3) Elaphe dione (1), Phrynocephalus helioscopus (3) |
图2 爬行动物物种多样性随海拔梯度的变化。实点表示观测的物种多样性, 灰色实线为模型预测的物种多样性, 灰色虚线表示模型预测的95%置信区间。
Fig. 2 Change of reptile species diversity along the elevational gradient. Dot represents observed species diversity. Grey solid line represents the predicted diversity by model. Dashed grey lines represent 95% confident intervals of predicted diversity.
变量 Variables | 模型解释力 Explanatory power (R2, %) | AIC | P | 自由度 Effective degrees of freedom |
---|---|---|---|---|
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | ||||
海拔 Altitude | 45.9 | 19.57 | 0.040* | 4.30 |
年均温 AMT | 17 | 24.10 | 0.036* | 1 |
年降水量 AP | 4.39 | 27.81 | 0.00013*** | 0.34 |
海拔 × 年降水量 Altitude × AP | 51.1 | 20.16 | PAltitude = 0.050*; PAP = 0.78 | υAltitude = 4.64; υAP = 1.28 |
年降水量 × 年均温 AP × AMT | 18.5 | 25.04 | PAMT = 0.056; PAP = 0.51 | υAMT = 1; υAP = 1 |
海拔 × 年均温 Altitude × AMT | 52.4 | 25.61 | PAMT = 0.23; PAltitude = 0.091 | υAMT = 1; υAltitude = 4.62 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 47.1 | 17.89 | PAMT = 0.00083***; PAltitude = 0.0043**; PAP = 0.097 | υAMT = 1; υAltitude = 1; υAP = 1.75 |
Simpson优势度指数 Simpson dominance index | ||||
海拔 Altitude | 43.6 | 13.38 | 0.054 | 4.12 |
年均温 AMT | 16.2 | 17.27 | 0.042* | 1 |
年降水量 AP | 4.49 | 20.66 | 0.30 | 1 |
海拔 × 年降水量 Altitude × AP | 49.1 | 13.93 | PAltitude = 0.061; PAP = 0.68 | υAltitude = 4.82; υAP = 1.00 |
年降水量 × 年均温 AP × AMT | 17.3 | 18.92 | PAMT = 0.072; PAP = 0.58 | υAMT = 1; υAP = 1 |
海拔 × 年均温 Altitude × AMT | 51 | 12.62 | PAMT = 0.24; PAltitude = 0.11 | υAMT = 4.65; υAltitude = 1 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 40.1 | 13.42 | PAMT = 0.0023**; PAltitude = 0.011*; PAP = 0.18 | υAMT = 1; υAltitude = 1; υAP = 1.45 |
丰富度 Richness | ||||
海拔 Altitude | 36.5 | 63.08 | 0.096 | 3.67 |
年均温 AMT | 17.7 | 64.49 | 0.033* | 1.01 |
年降水量 AP | 44.8 | 62.89 | 0.095 | 5.38 |
海拔 × 年降水量 Altitude × AP | 65.4 | 55.55 | PAltitude = 0.14; PAP = 0.022* | υAltitude = 2.06; υAP = 5.73 |
年降水量 × 年均温 AP × AMT | 37.3 | 63.77 | PAMT = 0.10; PAP = 0.33 | υAMT = 1.00; υAP = 3.17 |
海拔 × 年均温 Altitude × AMT | 35.1 | 63.50 | PAMT = 0.13; PAltitude = 0.29 | υAMT = 1.00; υAltitude = 2.60 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 69.6 | 51.72 | PAMT = 0.0053**; PAltitude = 0.0047**; PAP = 0.0097** | υAMT = 1.00; υAltitude = 1.00; υAP = 5.57 |
表2 阿勒泰地区爬行动物多样性指数与不同因子的广义相加模型
Table 2 Generalized additive models for the species diversity of reptiles in Altay Prefecture
变量 Variables | 模型解释力 Explanatory power (R2, %) | AIC | P | 自由度 Effective degrees of freedom |
---|---|---|---|---|
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | ||||
海拔 Altitude | 45.9 | 19.57 | 0.040* | 4.30 |
年均温 AMT | 17 | 24.10 | 0.036* | 1 |
年降水量 AP | 4.39 | 27.81 | 0.00013*** | 0.34 |
海拔 × 年降水量 Altitude × AP | 51.1 | 20.16 | PAltitude = 0.050*; PAP = 0.78 | υAltitude = 4.64; υAP = 1.28 |
年降水量 × 年均温 AP × AMT | 18.5 | 25.04 | PAMT = 0.056; PAP = 0.51 | υAMT = 1; υAP = 1 |
海拔 × 年均温 Altitude × AMT | 52.4 | 25.61 | PAMT = 0.23; PAltitude = 0.091 | υAMT = 1; υAltitude = 4.62 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 47.1 | 17.89 | PAMT = 0.00083***; PAltitude = 0.0043**; PAP = 0.097 | υAMT = 1; υAltitude = 1; υAP = 1.75 |
Simpson优势度指数 Simpson dominance index | ||||
海拔 Altitude | 43.6 | 13.38 | 0.054 | 4.12 |
年均温 AMT | 16.2 | 17.27 | 0.042* | 1 |
年降水量 AP | 4.49 | 20.66 | 0.30 | 1 |
海拔 × 年降水量 Altitude × AP | 49.1 | 13.93 | PAltitude = 0.061; PAP = 0.68 | υAltitude = 4.82; υAP = 1.00 |
年降水量 × 年均温 AP × AMT | 17.3 | 18.92 | PAMT = 0.072; PAP = 0.58 | υAMT = 1; υAP = 1 |
海拔 × 年均温 Altitude × AMT | 51 | 12.62 | PAMT = 0.24; PAltitude = 0.11 | υAMT = 4.65; υAltitude = 1 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 40.1 | 13.42 | PAMT = 0.0023**; PAltitude = 0.011*; PAP = 0.18 | υAMT = 1; υAltitude = 1; υAP = 1.45 |
丰富度 Richness | ||||
海拔 Altitude | 36.5 | 63.08 | 0.096 | 3.67 |
年均温 AMT | 17.7 | 64.49 | 0.033* | 1.01 |
年降水量 AP | 44.8 | 62.89 | 0.095 | 5.38 |
海拔 × 年降水量 Altitude × AP | 65.4 | 55.55 | PAltitude = 0.14; PAP = 0.022* | υAltitude = 2.06; υAP = 5.73 |
年降水量 × 年均温 AP × AMT | 37.3 | 63.77 | PAMT = 0.10; PAP = 0.33 | υAMT = 1.00; υAP = 3.17 |
海拔 × 年均温 Altitude × AMT | 35.1 | 63.50 | PAMT = 0.13; PAltitude = 0.29 | υAMT = 1.00; υAltitude = 2.60 |
海拔 × 年降水量 × 年均温 Altitude × AP × AMT | 69.6 | 51.72 | PAMT = 0.0053**; PAltitude = 0.0047**; PAP = 0.0097** | υAMT = 1.00; υAltitude = 1.00; υAP = 5.57 |
图3 Shannon-Wiener多样性指数的最优模型环境因子光滑函数拟合结果。实点表示观测的多样性指数, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对Shannon-Wiener多样性指数的影响程度。
Fig. 3 Results of GAM analysis on Shannon-Wiener diversity index. Dot represents observed diversity index. Solid line represents the predicted fitting curves by model. Dashed lines represent 95% confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on Shannon-Wiener diversity index.
图4 Simpson优势度指数的最优模型环境因子光滑函数拟合结果。实点表示观测的优势度指数, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对Simpson优势度指数的影响程度。
Fig. 4 Results of GAM analysis on Simpson dominance index. Dot represents observed dominance index. Solid line represents the predicted 95% fitting curves by model. Dashed lines represent confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on Simpson dominance index.
图5 丰富度的最优模型环境因子光滑函数拟合结果。实点表示观测的丰富度, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对丰富度的影响程度。
Fig. 5 Results of GAM analysis on richness. Dot represents observed richness. Solid line represents the predicted fitting curves by model. Dashed lines represent 95% confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on richness.
[40] | Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, Riva IJDL, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894-899. |
[41] | Storch D, Evans KL, Gaston KJ (2005) The species-area-energy relationship. Ecology Letters, 8, 487-492. |
[42] | Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301. |
[43] | Wang GY, Fan Y, Zhai RX (2005) Distribution and ecology of snakes in Xinjiang. Arid Zone Research, 22, 181-185. (in Chinese with English abstract) |
[王国英, 范勇, 翟荣仙 (2005) 新疆蛇类的分布及生态特征. 干旱区研究, 22, 181-185.] | |
[44] | Wang Z, Tang Z, Fang J (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854. |
[45] | Wen ZM, He XH, Jiao F, Jiao JY (2008) The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application. Acta Ecologica Sinica, 28, 192-201. (in Chinese with English abstract) |
[温仲明, 赫晓慧, 焦峰, 焦菊英 (2008) 延河流域本氏针茅(Stipa bungeana)分布预测: 广义相加模型及其应用. 生态学报, 28, 192-201.] | |
[46] | Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. |
[47] | Whittaker RH, Niering WA (1965) Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology, 46, 429-452. |
[48] | Whittaker RJ, Nogués-Bravo D, Araújo M (2007) Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) 9 using European data for five taxa. Global Ecology and Biogeography, 16, 76-89. |
[49] | Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. Journal of Biogeography, 19, 183-193. |
[50] | Wood SN (2017) Generalized Additive Models: An Introduction with R. CRC, London. |
[51] | Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract) |
[吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.] | |
[52] | Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196. |
[53] | Wu YP, Xu H, Li YD, Luo TS, Chen DX, Lin MX (2013) Elevation patterns of tree and shrub species diversity of tropical forests in Jianfengling, Hainan Island. Scientia Silvae Sinicae, 49(4), 16-23. (in Chinese with English abstract) |
[吴裕鹏, 许涵, 李意德, 骆土寿, 陈德祥, 林明献 (2013) 海南尖峰岭热带林乔灌木层物种多样性沿海拔梯度分布格局. 林业科学, 49(4), 16-23.] | |
[54] | Xiang LG, Huang RX (1986) Study on birds in the Altai of Xinjiang: Distribution of birds. Journal of Xinjiang University, 3(3), 90-106. (in Chinese) |
[向礼陔, 黄人鑫 (1986) 新疆阿尔泰山鸟类的研究——鸟类的分布. 新疆大学学报, 3(3), 90-106.] | |
[55] | Xu SK, Xiang LG, Huang RX (1980) A new record of lizards from Sinkiang——Viviparous lizard. Journal of Xinjiang University, (2), 95-96. (in Chinese) |
[许设科, 向礼陔, 黄人鑫 (1980) 新疆蜥蜴类的新记录——胎生蜥蜴. 新疆大学学报, (2), 95-96.] | |
[56] | Zhang JT (2004) Quantitative Ecology. Science Press, Beijing. (in Chinese) |
[1] | Barrows CW, Hoines J, Vamstad MS, Murphy-Mariscal M, Lalumiere K, Heintz J (2016) Using citizen scientists to assess climate change shifts in desert reptile communities. Biological Conservation, 195, 82-88. |
[2] | Brown JH (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467-478. |
[56] | [张金屯 (2004) 数量生态学. 科学出版社, 北京.] |
[57] | Zhang RZ (2011) Zoogeography of China. Science Press, Beijing. (in Chinese) |
[3] | Brown JL, Sillero N, Glaw F, Bora P, Vieites DR, Vences M (2016) Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE, 11, e0144076. |
[4] | Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society of London B: Biological Sciences, 274, 1167-1173. |
[57] | [张荣祖 (2011) 中国动物地理. 科学出版社, 北京.] |
[58] | Zhao EM, Adler K (1993) Herpetology of China. Society for the Study of Amphibians and Reptiles in cooperation with Chinese Society for the Study of Amphibians and Reptiles, Oxford, Ohio. |
[5] | Cai B, Wang YZ, Chen YY, Li JT (2015) A revised taxonomy for Chinese reptiles. Biodiversity Science, 23, 365-382. (in Chinese with English abstract) |
[蔡波, 王跃招, 陈跃英, 李家堂 (2015) 中国爬行纲动物分类厘定. 生物多样性, 23, 365-382.] | |
[59] | Zhao KT (1979) A survey of the classification and distribution of the toad-headed agamids (Phrynocephalus) in China. Acta Scientiarum Naturalium Universitatis Neimongol, 10(2), 111-121. (in Chinese) |
[赵肯堂 (1979) 中国沙蜥属的分类和分布研究. 内蒙古大学学报(自然科学版), 10(2), 111-121.] | |
[6] | Cao MC, Zhou GS, Weng ES (2005) Application and comparison of generalized models and classification and regression tree in simulating tree species distribution. Acta Ecologica Sinica, 25, 2031-2040. (in Chinese with English abstract) |
[曹铭昌, 周广胜, 翁恩生 (2005) 广义模型及分类回归树在物种分布模拟中的应用与比较. 生态学报, 25, 2031-2040.] | |
[60] | Zhao KT (1983) Eremias in China. Chinese Journal of Zoology, 18(2), 2-5. (in Chinese) |
[赵肯堂 (1983) 中国麻蜥属的初步整理. 动物学杂志, 18(2), 2-5.] | |
[7] | Carpio AJ, Oteros J, Tortosa FS, Guerrero-Casado J (2016) Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecologica, 70, 103-111. |
[8] | Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16-22. |
[61] | Zhao KT (1997) Toad-headed agamids in China. Chinese Journal of Zoology, 32(1), 15-18. (in Chinese) |
[赵肯堂 (1997) 中国的沙蜥属研究. 动物学杂志, 32(1), 15-18.] | |
[9] | Cui SP, Luo X, Chen DQ, Sun JZ, Chu HJ, Li CW, Jiang ZG (2016) The adder (Vipera berus) in Southern Altay Mountains: Population characteristics, distribution, morphology and phylogenetic position. PeerJ, 4, e2342. |
[10] | Currie DJ (1991) Energy and large-scale patterns of animal and plant-species richness. The American Naturalist, 137, 27-49. |
[62] | Zhao KT (1998) Geckoes (Gekkomidae) in western China. Chinese Journal of Zoology, 33(1), 19-24. (in Chinese with English abstract) |
[赵肯堂 (1998) 中国西部地区的壁虎科动物研究. 动物学杂志, 33(1), 19-24.] | |
[63] | Zheng Z, Gong DJ, Sun CX (2014a) Elevational pattern of species richness and species range size of herpetofauna in Baishuijiang Nature Reserve: A test of Rapoport’s rule. Chinese Journal of Ecology, 33, 537-546. (in Chinese with English abstract) |
[郑智, 龚大洁, 孙呈祥 (2014a) 白水江自然保护区两栖爬行动物物种丰富度和种域海拔梯度格局及对Rapoport法则的验证. 生态学杂志, 33, 537-546.] | |
[11] | Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Reviews, 80, 1-25. |
[12] | Forcella F, Harvey SJ (1983) Eurasian weed infestation in western Montana in relation to vegetation and disturbance. Madrono, 30, 102-109. |
[64] | Zheng Z, Gong DJ, Sun CX, Li XJ, Li WJ (2014b) Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation. Biodiversity Science, 22, 596-607. (in Chinese with English abstract) |
[郑智, 龚大洁, 孙呈祥, 李晓军, 李万江 (2014b) 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释. 生物多样性, 22, 596-607.] | |
[13] | Fu C, Hua X, Li J, Chang Z, Pu Z, Chen J (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: Geometric constraints, area and climate effects. Ecography, 29, 919-927. |
[14] | Gu JH, Gao XY (1991) Studies on the Animals in Xinjiang. Science Press, Beijing. |
[65] | Zhou YH, Wang GY, Ni YF (1986) A new record and subspecies of tartar sand boa. Journal of Xinjiang Agricultural University, 9(3), 42-45. (in Chinese) |
[周永恒, 王国英, 倪亦非 (1986) 东方沙蟒一新纪录及一新亚种. 新疆农业大学学报, 9(3), 42-45.] | |
[14] | (in Chinese) [谷景和, 高行宜 (1991) 新疆动物研究. 科学出版社, 北京.] |
[15] | Guo QF, Kelf DA, Sun ZY, Liu HX, Hu LJ, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Scientific Reports, 3, 3007. |
[66] | Zhu Y, Kang MY (2005) Application of ordination and GLM/GAM in the research of the relationship between plant species and environment. Chinese Journal of Ecology, 24, 807-811. (in Chinese with English abstract) |
[朱源, 康慕谊 (2005) 排序和广义线性模型与广义可加模型在植物种与环境关系研究中的应用. 生态学杂志, 24, 807-811.] | |
[16] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. |
[17] | Hu YM, Jin K, Huang ZW, Ding ZF, Liang JC, Pan XY, Hu HJ, Jiang ZG (2017) Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, 44, 2764-2777. |
[18] | Huang RX, Xiang LG, Ma J (1986) Study on birds in the Altai of Xinjiang: Feeding habits of birds. Journal of Xinjiang University, 3(4), 79-92. (in Chinese) |
[黄人鑫, 向礼陔, 马纪 (1986) 新疆阿尔泰山鸟类的研究——鸟类的食性. 新疆大学学报, 3(4), 79-92.] | |
[19] | Ji DM, Wen SS (2002) Atlas of Reptiles of China. Henan Science and Technology Press, Zhengzhou. (in Chinese) |
[季达明, 温世生 (2002) 中国爬行动物图鉴. 河南科学技术出版社, 郑州.] | |
[20] | Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English) |
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.] | |
[21] | Jing XH, Zang RG, Ding Y, Zhang WY, Zhang XP, Bai ZQ, Guo ZJ (2010) Distribution pattern of species diversity along altitudinal gradient in the northern slope of Xiaodonggou in Altai Mountains, Xinjiang. Scientia Silvae Sinicae, 46(1), 23-28. (in Chinese with English abstract) |
[井学辉, 臧润国, 丁易, 张炜银, 张新平, 白志强, 郭仲军 (2010) 新疆阿尔泰山小东沟北坡植物多样性沿海拔梯度分布格局. 林业科学, 46(1), 23-28.] | |
[22] | Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149, 181-193. |
[23] | Kiester AR (1971) Species density of North American amphibians and reptiles. Systematic Zoology, 20, 127-137. |
[24] | Liu YL (2010) Ecological Environment of Altai: Along Xinjiang Kuytun-Beitun Railway. China Environmental Science Press, Beijing. (in Chinese) |
[刘晏良 (2010) 阿勒泰生态环境: 新疆奎北铁路沿线. 中国环境科学出版社, 北京.] | |
[25] | Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10, 3-13. |
[26] | Luo ZH, Tang SH, Li CW, Fang HX, Hu HJ, Yang J, Ding JJ, Jiang ZG (2012) Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE, 7, e35514. |
[27] | Ma Y (1981a) On geographic distribution of the rodents in northern Xinjiang. Acta Zoologica Sinica, 27, 180-188. (in Chinese) |
[马勇 (1981a) 新疆北部地区啮齿动物地理分布的研究. 动物学报, 27, 180-188.] | |
[28] | Ma Y (1981b) On the dividing of the zoogeographical regions of rodents of northern Xinjiang. Acta Zoologica Sinica, 27, 395-402. (in Chinese) |
[马勇 (1981b) 新疆北部地区动物地理区划的几个问题. 动物学报, 27, 395-402.] | |
[29] | Ma Y, Wang FG, Jin SK, Li SH (1987) Glires (Rodents and Lagomorphs) of Northern Xinjiang and Their Zoogeographical Distribution. Science Press, Beijing. (in Chinese) |
[马勇, 王逢桂, 金善科, 李思华 (1987) 新疆北部地区啮齿动物的分类和分布. 科学出版社, 北京.] | |
[30] | McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360. |
[31] | McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541-553. |
[32] | Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecological Monographs, 39, 227-244. |
[33] | Qian H (2010) Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 25, 629-637. |
[34] | Qian H, Wang X, Wang S, Li Y (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482. |
[35] | Rahbek C (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205. |
[36] | Richerson PJ, Lum KL (1980) Patterns of plant species diversity in California: Relation to weather and topography. The American Naturalist, 116, 504-536. |
[37] | Schall JJ, Pianka ER (1978) Geographical trends in numbers of species. Science, 201, 679-686. |
[38] | Shi L, Liu GS, Li ZH, Yuan H (2006) An record of Coluber spinalis from Altai Mountain. Journal of Xinjiang Agricultural University, 29(1), 55-57. (in Chinese with English abstract) |
[时磊, 刘国仕, 李志惠, 原洪 (2006) 阿尔泰山发现黄脊游蛇. 新疆农业大学学报, 29(1), 55-57.] | |
[39] | Shi L, Zhou YH, Yuan H (2002) Reptile fauna and zoogeographic division of Xinjiang Uygur Autonomous Region. Sichuan Journal of Zoology, 21(3), 152-157. (in Chinese) |
[时磊, 周永恒, 原洪 (2002) 新疆维吾尔自治区爬行动物区系与地理区划. 四川动物, 21(3), 152-157.] |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[7] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[8] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[9] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[10] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[11] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[12] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[13] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[14] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[15] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn