生物多样性 ›› 2017, Vol. 25 ›› Issue (1): 3-10. DOI: 10.17520/biods.2016220
赵鸣飞1,2, 王国义1,2, 邢开雄3, 王宇航1,2, 薛峰1,2, 康慕谊1,2,*(), 罗开4
收稿日期:
2016-08-11
接受日期:
2016-10-19
出版日期:
2017-01-20
发布日期:
2017-02-08
通讯作者:
康慕谊
基金资助:
Mingfei Zhao1,2, Guoyi Wang1,2, Kaixiong Xing3, Yuhang Wang1,2, Feng Xue1,2, Muyi Kang1,2,*(), Kai Luo4
Received:
2016-08-11
Accepted:
2016-10-19
Online:
2017-01-20
Published:
2017-02-08
Contact:
Kang Muyi
摘要:
群落间物种组成的相似性递减格局与生境过滤、空间过程密切相关, 探索其成因涉及到群落构建机制等生态学核心问题。本研究以秦岭西部森林群落为研究对象, 运用Mantel检验和基于距离矩阵的多元回归方法, 探究了不同生态因子对群落相似性变异的贡献, 并通过置换检验比较不同生活型之间相似性的空间递减率差异。结果显示: (1) 3种生活型物种组成相似性与地理距离、海拔距离、局地生境异质性差异均呈显著递减趋势; (2)地理距离与生境差异作为主导因子, 分别共同解释乔木、灌木和草本群落相似性变异的41.1%、59.0%和47.4%, 且地理距离的单独解释率均大于生境过滤的单独解释率; (3)不同生活型相似性在空间上的递减率大小关系为: 乔木 > 灌木 > 草本, 表明物种因扩散能力的不同而对空间阻隔效应的响应存在差异。本研究初步确定扩散限制与生境过滤共同主导了秦岭西部森林群落的构建过程, 且扩散限制所起作用更为显著。
赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开 (2017) 秦岭西部森林群落相似性递减格局及其影响因素. 生物多样性, 25, 3-10. DOI: 10.17520/biods.2016220.
Mingfei Zhao, Guoyi Wang, Kaixiong Xing, Yuhang Wang, Feng Xue, Muyi Kang, Kai Luo (2017) Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains. Biodiversity Science, 25, 3-10. DOI: 10.17520/biods.2016220.
解释变量 Explanatory variable | 乔木 Tree | 灌木 Shrub | 草本 Herb |
---|---|---|---|
地理距离 Geographic distance | 0.640*** | 0.787*** | 0.656*** |
海拔距离 Elevational distance | 0.674*** | 0.647*** | 0.586*** |
坡向 Aspect | 0.067 | 0.057 | 0.216*** |
坡度 Slope | 0.035 | 0.071 | 0.151* |
冠层厚度 Canopy thickness | 0.060 | -0.026 | 0.090 |
总胸高断面积 Total basal area | 0.184** | 0.122 | 0.226** |
乔木密度 Tree density | -0.101 | -0.197 | -0.028 |
土壤深度 Soil depth | 0.003 | -0.080 | 0.024 |
凋落层厚度 Litter thickness | 0.319*** | 0.107 | 0.295*** |
土壤有机碳 Soil organic C | 0.355*** | 0.300*** | 0.440*** |
土壤全氮 Soil total N | 0.395*** | 0.306*** | 0.441*** |
土壤全磷 Soil total P | 0.214** | 0.210*** | 0.265*** |
表1 基于Mantel检验的群落物种相似性与地理距离、海拔距离、生境差异之间的相关关系
Table 1 Mantel tests for the correlation between the community similarity and geographic distance, elevational distance and habitat divergence
解释变量 Explanatory variable | 乔木 Tree | 灌木 Shrub | 草本 Herb |
---|---|---|---|
地理距离 Geographic distance | 0.640*** | 0.787*** | 0.656*** |
海拔距离 Elevational distance | 0.674*** | 0.647*** | 0.586*** |
坡向 Aspect | 0.067 | 0.057 | 0.216*** |
坡度 Slope | 0.035 | 0.071 | 0.151* |
冠层厚度 Canopy thickness | 0.060 | -0.026 | 0.090 |
总胸高断面积 Total basal area | 0.184** | 0.122 | 0.226** |
乔木密度 Tree density | -0.101 | -0.197 | -0.028 |
土壤深度 Soil depth | 0.003 | -0.080 | 0.024 |
凋落层厚度 Litter thickness | 0.319*** | 0.107 | 0.295*** |
土壤有机碳 Soil organic C | 0.355*** | 0.300*** | 0.440*** |
土壤全氮 Soil total N | 0.395*** | 0.306*** | 0.441*** |
土壤全磷 Soil total P | 0.214** | 0.210*** | 0.265*** |
图1 群落物种相似性指数与地理距离(a, b, c)、海拔距离(d, e, f)、生境差异(g, h, i)之间的关系。图中直线为线性回归拟合线。
Fig. 1 Scatter plots of species similarity against geographical distance (a, b, c), elevational distance (d, e, f) and habitat divergence (g, h, i). Lines in the plots are fitted by ordinary least square regression.
图2 偏MRM (距离矩阵多元回归)模型中地理距离、生境差异对乔木、灌木、草本3种生活型物种相似性的解释率
Fig. 2 Variances in species similarity of life forms of trees, shrubs and herbs explained by geographic distance and habitat divergence according to partial MRM (multiple regressions on distance matrices)
空间变量 Spatial variables | 生活型 Life form | 灌木 Shrubs | 草本 Herbs |
---|---|---|---|
海拔距离 Elevational distance | 乔木 Tree | P < 0.001 | P < 0.001 |
灌木 Shrub | - | P = 0.006 | |
地理距离 Geographical distance | 乔木 Tree | P = 0.182 | P < 0.001 |
灌木 Shrub | - | P < 0.001 |
表2 不同生活型物种相似性沿空间距离递减率差异比较
Table 2 Differences in the rate of distance decay in species composition of trees, shrubs and herbs
空间变量 Spatial variables | 生活型 Life form | 灌木 Shrubs | 草本 Herbs |
---|---|---|---|
海拔距离 Elevational distance | 乔木 Tree | P < 0.001 | P < 0.001 |
灌木 Shrub | - | P = 0.006 | |
地理距离 Geographical distance | 乔木 Tree | P = 0.182 | P < 0.001 |
灌木 Shrub | - | P < 0.001 |
27 | Navarro T, Oualidi JE, Taleb MS, Pascual V, Cabezudo B (2009) Dispersal traits and dispersal patterns in an oro-Mediterranean thorn cushion plant formation of the eastern High Atlas, Morocco. Flora, 204, 658-672. |
28 | Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867-878. |
29 | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: community ecology package. R package version 2.0-10. |
30 | Peng SY, Hu G, Yu MJ (2014) Beta diversity of vascular and its influencing factors on islands in the Thousand Island Lake. Acta Ecologica Sinica, 34, 3866-3872. (in Chinese with English abstract) |
[彭思羿, 胡广, 于明坚 (2014) 千岛湖岛屿维管植物β多样性及其影响因素. 生态学报, 34, 3866-3872.] | |
31 | Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332. |
32 | Qian H, Hao ZJ, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165. |
33 | Rayment GE, Higginson FR (1992) Australian Laboratory Handbook of Soil and Water Chemical Methods.Inkata Press, Melbourne. |
34 | Reich PB, Frelich LE, Voldseth RA, Bakken P, Adair EC (2012) Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology, 100, 539-545. |
35 | Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. |
36 | Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655. |
37 | Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12. |
38 | Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 21, 1203-1212. |
39 | Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. Journal of Biogeography, 33, 1044-1054. |
40 | Tan SS, Ye ZL, Yuan LB, Zhou RF, Hu G, Jin XF, Yu MJ (2013) Beta diversity of plant communities in Baishanzu Nature Reserve. Acta Ecologica Sinica, 33, 6944-6956. (in Chinese with English abstract) |
[谭珊珊, 叶珍林, 袁留斌, 周荣飞, 胡广, 金孝锋, 于明坚 (2013) 百山祖自然保护区植物群落beta多样性. 生态学报, 33, 6944-6956.] | |
41 | Tang ZY, Fang JY, Chi XL, Feng JM, Liu YN, Shen ZH, Wang XP, Wang ZH, Wu XP, Zheng CY (2012a) Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China. Ecography, 35, 1083-1091. |
42 | Tang ZY, Fang JY, Chi XL, Yang YY, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ (2012b) Geography, environment, and spatial turnover of species in China’s grasslands. Ecography, 35, 1103-1109. |
43 | Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234-240. |
44 | Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244. |
1 | Brad O, Grace JB, Chase JM (2009) Beneath the veil: plant growth form influences the strength of species richness-productivity relationships in forests. Global Ecology and Biogeography, 18, 416-425. |
2 | Capinha C, Essl F, Seebens H, Moser D, Pereira HM (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348, 1248-1251. |
45 | Vavrek MJ (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14, 50-64. |
46 | Wang D, Wang XA, Guo H, Wang SX, Zheng WN, Liu SL (2013) Effect of species disperal and environmental factors on species assemblages in grassland communities. Acta Ecologica Sinica, 33, 4409-4415. (in Chinese with English abstract) |
3 | Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25, 319-322. |
4 | Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract) |
46 | [王丹, 王孝安, 郭华, 王世雄, 郑维娜, 刘史力 (2013) 环境和扩散对草地群落构建的影响. 生态学报, 33, 4409-4415.] |
47 | Wang D, Geng ZC, Yu D, He WX, Hou L (2014) Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains. Chinese Jounal of Applied Ecology, 25, 1569-1577. (in Chinese with English abstract) |
4 | [陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.] |
5 | Donoghue MJ (2008) Phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences, USA, 105, 11549-11555. |
47 | [王棣, 耿增超, 佘雕, 和文祥, 侯琳 (2014) 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征. 应用生态学报, 25, 1569-1577.] |
48 | Wang ZH, Fang JY, Tang ZY, Lin X (2010) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132. |
6 | Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391-1416. |
7 | Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA, 101, 7651-7656. |
49 | Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644. |
50 | Xiao ZS, Wang YS, Zhang ZB (2001) Seed bank and the factors influencing it for three Fagaceae species in Dujiangyan Region, Sichuan. Biodiversity Science, 9, 373-381. (in Chinese with English abstract) |
8 | Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19. |
9 | Götzenberger L, Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 87, 111-127. |
10 | Han XH, Wen LF, Liu Y, Wang Z (2010) Current situation of forest resources and management measures for Matoutan Forestry Bureau. Shaanxi Forest Science and Technology, (4), 59-61. (in Chinese with English abstract) |
[韩星海, 汶录凤, 刘勇, 王周 (2010) 马头滩林业局森林资源现状分析. 陕西林业科技, (4), 59-61.] | |
11 | Hawkins BA, Rodríguez MÁ, Weller SG (2011) Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography, 38, 1253-1266. |
12 | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
13 | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869. |
14 | Jurasinski G (2007) Simba: a collection of functions for similarity calculation of binary data R package Version 0.2-5.(accessed on 2016-07-20 |
15 | Körner C (2007) The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22, 569-574. |
16 | Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029-2053. |
17 | Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333. |
18 | Legendre P, Legendre LFJ (1998) Numerical Ecology.Elsevier, Amsterdam. |
19 | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90, 663-674. |
20 | Lennon JJ, Koleff P, Greenwood J, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. |
21 | Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Grytnes JA (2010) Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE, 5, e15734. |
22 | Lenoir J, Virtanen R, Oksanen J, Oksanen L, Luoto M, Grytnes JA, Svenning JC (2012) Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Global Ecology and Biogeography, 21, 851-860. |
23 | Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 188, 117-131. |
24 | Liu QF, Kang MY, Liu QR (2006) Quantitative classification and environmental interpretation of forest tree species in Hungou, Zhongtiao Mountain. Journal of Plant Ecology (Chinese Version), 30, 383-391. (in Chinese with English abstract) |
[刘秋锋, 康慕谊, 刘全儒 (2006) 中条山混沟地区森林乔木种的数量分类与环境解释. 植物生态学报, 30, 383-391.] | |
25 | Liu Y, Tang ZY, Fang JY (2015) Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broad-leaved forests in China. Applied Vegetation Science, 18, 34-42. |
26 | Lu P, Jin Y, Chen JH, Li MH, Yu MJ (2013) Influence of geographical distance and topographic difference on β diversity in two large-scale forest dynamics plots. Biodiversity Science, 21, 554-563. (in Chinese with English abstract) |
50 | [肖治术, 王玉山, 张知彬 (2001) 都江堰地区三种壳斗科植物的种子库及其影响因素研究. 生物多样性, 9, 373-381.] |
26 | [卢品, 金毅, 陈建华, 李铭红, 于明坚 (2013) 地理距离和地形差异对两个大型森林动态样地β多样性的影响. 生物多样性, 21, 554-563.] |
[1] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[2] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[3] | 曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 赵航, 朱威霖, 王健铭, 李景文. 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响[J]. 生物多样性, 2022, 30(11): 22029-. |
[4] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[5] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[6] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[7] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[8] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[9] | 董雷, 王静, 刘永刚, 赵志平, 米湘成, 郭柯. 太行山北段地区荆条灌丛和三裂绣线菊灌丛群落谱系结构[J]. 生物多样性, 2021, 29(1): 21-31. |
[10] | 姚志良,温韩东,邓云,曹敏,林露湘. 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力[J]. 生物多样性, 2020, 28(4): 445-454. |
[11] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[12] | 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12): 1570-1580. |
[13] | 桂旭君,练琚愉,张入匀,李艳朋,沈浩,倪云龙,叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629. |
[14] | 刘翔宇,赵慈良,许洺山,梁启明,朱晓彤,李亮,阎恩荣. 中国东部海岛维管植物的beta多样性及其驱动因素[J]. 生物多样性, 2019, 27(4): 380-387. |
[15] | 杨贵军, 王敏, 杨益春, 李欣芸, 王新谱. 贺兰山甲虫物种丰富度分布格局及其环境解释[J]. 生物多样性, 2019, 27(12): 1309-1319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn