生物多样性 ›› 2017, Vol. 25 ›› Issue (1): 3-10. DOI: 10.17520/biods.2016220
赵鸣飞1,2, 王国义1,2, 邢开雄3, 王宇航1,2, 薛峰1,2, 康慕谊1,2,*(), 罗开4
收稿日期:
2016-08-11
接受日期:
2016-10-19
出版日期:
2017-01-20
发布日期:
2017-02-08
通讯作者:
康慕谊
基金资助:
Mingfei Zhao1,2, Guoyi Wang1,2, Kaixiong Xing3, Yuhang Wang1,2, Feng Xue1,2, Muyi Kang1,2,*(), Kai Luo4
Received:
2016-08-11
Accepted:
2016-10-19
Online:
2017-01-20
Published:
2017-02-08
Contact:
Kang Muyi
摘要:
群落间物种组成的相似性递减格局与生境过滤、空间过程密切相关, 探索其成因涉及到群落构建机制等生态学核心问题。本研究以秦岭西部森林群落为研究对象, 运用Mantel检验和基于距离矩阵的多元回归方法, 探究了不同生态因子对群落相似性变异的贡献, 并通过置换检验比较不同生活型之间相似性的空间递减率差异。结果显示: (1) 3种生活型物种组成相似性与地理距离、海拔距离、局地生境异质性差异均呈显著递减趋势; (2)地理距离与生境差异作为主导因子, 分别共同解释乔木、灌木和草本群落相似性变异的41.1%、59.0%和47.4%, 且地理距离的单独解释率均大于生境过滤的单独解释率; (3)不同生活型相似性在空间上的递减率大小关系为: 乔木 > 灌木 > 草本, 表明物种因扩散能力的不同而对空间阻隔效应的响应存在差异。本研究初步确定扩散限制与生境过滤共同主导了秦岭西部森林群落的构建过程, 且扩散限制所起作用更为显著。
赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开 (2017) 秦岭西部森林群落相似性递减格局及其影响因素. 生物多样性, 25, 3-10. DOI: 10.17520/biods.2016220.
Mingfei Zhao, Guoyi Wang, Kaixiong Xing, Yuhang Wang, Feng Xue, Muyi Kang, Kai Luo (2017) Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains. Biodiversity Science, 25, 3-10. DOI: 10.17520/biods.2016220.
解释变量 Explanatory variable | 乔木 Tree | 灌木 Shrub | 草本 Herb |
---|---|---|---|
地理距离 Geographic distance | 0.640*** | 0.787*** | 0.656*** |
海拔距离 Elevational distance | 0.674*** | 0.647*** | 0.586*** |
坡向 Aspect | 0.067 | 0.057 | 0.216*** |
坡度 Slope | 0.035 | 0.071 | 0.151* |
冠层厚度 Canopy thickness | 0.060 | -0.026 | 0.090 |
总胸高断面积 Total basal area | 0.184** | 0.122 | 0.226** |
乔木密度 Tree density | -0.101 | -0.197 | -0.028 |
土壤深度 Soil depth | 0.003 | -0.080 | 0.024 |
凋落层厚度 Litter thickness | 0.319*** | 0.107 | 0.295*** |
土壤有机碳 Soil organic C | 0.355*** | 0.300*** | 0.440*** |
土壤全氮 Soil total N | 0.395*** | 0.306*** | 0.441*** |
土壤全磷 Soil total P | 0.214** | 0.210*** | 0.265*** |
表1 基于Mantel检验的群落物种相似性与地理距离、海拔距离、生境差异之间的相关关系
Table 1 Mantel tests for the correlation between the community similarity and geographic distance, elevational distance and habitat divergence
解释变量 Explanatory variable | 乔木 Tree | 灌木 Shrub | 草本 Herb |
---|---|---|---|
地理距离 Geographic distance | 0.640*** | 0.787*** | 0.656*** |
海拔距离 Elevational distance | 0.674*** | 0.647*** | 0.586*** |
坡向 Aspect | 0.067 | 0.057 | 0.216*** |
坡度 Slope | 0.035 | 0.071 | 0.151* |
冠层厚度 Canopy thickness | 0.060 | -0.026 | 0.090 |
总胸高断面积 Total basal area | 0.184** | 0.122 | 0.226** |
乔木密度 Tree density | -0.101 | -0.197 | -0.028 |
土壤深度 Soil depth | 0.003 | -0.080 | 0.024 |
凋落层厚度 Litter thickness | 0.319*** | 0.107 | 0.295*** |
土壤有机碳 Soil organic C | 0.355*** | 0.300*** | 0.440*** |
土壤全氮 Soil total N | 0.395*** | 0.306*** | 0.441*** |
土壤全磷 Soil total P | 0.214** | 0.210*** | 0.265*** |
图1 群落物种相似性指数与地理距离(a, b, c)、海拔距离(d, e, f)、生境差异(g, h, i)之间的关系。图中直线为线性回归拟合线。
Fig. 1 Scatter plots of species similarity against geographical distance (a, b, c), elevational distance (d, e, f) and habitat divergence (g, h, i). Lines in the plots are fitted by ordinary least square regression.
图2 偏MRM (距离矩阵多元回归)模型中地理距离、生境差异对乔木、灌木、草本3种生活型物种相似性的解释率
Fig. 2 Variances in species similarity of life forms of trees, shrubs and herbs explained by geographic distance and habitat divergence according to partial MRM (multiple regressions on distance matrices)
空间变量 Spatial variables | 生活型 Life form | 灌木 Shrubs | 草本 Herbs |
---|---|---|---|
海拔距离 Elevational distance | 乔木 Tree | P < 0.001 | P < 0.001 |
灌木 Shrub | - | P = 0.006 | |
地理距离 Geographical distance | 乔木 Tree | P = 0.182 | P < 0.001 |
灌木 Shrub | - | P < 0.001 |
表2 不同生活型物种相似性沿空间距离递减率差异比较
Table 2 Differences in the rate of distance decay in species composition of trees, shrubs and herbs
空间变量 Spatial variables | 生活型 Life form | 灌木 Shrubs | 草本 Herbs |
---|---|---|---|
海拔距离 Elevational distance | 乔木 Tree | P < 0.001 | P < 0.001 |
灌木 Shrub | - | P = 0.006 | |
地理距离 Geographical distance | 乔木 Tree | P = 0.182 | P < 0.001 |
灌木 Shrub | - | P < 0.001 |
27 | Navarro T, Oualidi JE, Taleb MS, Pascual V, Cabezudo B (2009) Dispersal traits and dispersal patterns in an oro-Mediterranean thorn cushion plant formation of the eastern High Atlas, Morocco. Flora, 204, 658-672. |
28 | Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867-878. |
29 | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: community ecology package. R package version 2.0-10. |
30 | Peng SY, Hu G, Yu MJ (2014) Beta diversity of vascular and its influencing factors on islands in the Thousand Island Lake. Acta Ecologica Sinica, 34, 3866-3872. (in Chinese with English abstract) |
[彭思羿, 胡广, 于明坚 (2014) 千岛湖岛屿维管植物β多样性及其影响因素. 生态学报, 34, 3866-3872.] | |
31 | Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332. |
32 | Qian H, Hao ZJ, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165. |
33 | Rayment GE, Higginson FR (1992) Australian Laboratory Handbook of Soil and Water Chemical Methods.Inkata Press, Melbourne. |
34 | Reich PB, Frelich LE, Voldseth RA, Bakken P, Adair EC (2012) Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology, 100, 539-545. |
35 | Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. |
36 | Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655. |
37 | Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12. |
38 | Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 21, 1203-1212. |
39 | Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. Journal of Biogeography, 33, 1044-1054. |
40 | Tan SS, Ye ZL, Yuan LB, Zhou RF, Hu G, Jin XF, Yu MJ (2013) Beta diversity of plant communities in Baishanzu Nature Reserve. Acta Ecologica Sinica, 33, 6944-6956. (in Chinese with English abstract) |
[谭珊珊, 叶珍林, 袁留斌, 周荣飞, 胡广, 金孝锋, 于明坚 (2013) 百山祖自然保护区植物群落beta多样性. 生态学报, 33, 6944-6956.] | |
41 | Tang ZY, Fang JY, Chi XL, Feng JM, Liu YN, Shen ZH, Wang XP, Wang ZH, Wu XP, Zheng CY (2012a) Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China. Ecography, 35, 1083-1091. |
42 | Tang ZY, Fang JY, Chi XL, Yang YY, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ (2012b) Geography, environment, and spatial turnover of species in China’s grasslands. Ecography, 35, 1103-1109. |
43 | Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234-240. |
44 | Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244. |
1 | Brad O, Grace JB, Chase JM (2009) Beneath the veil: plant growth form influences the strength of species richness-productivity relationships in forests. Global Ecology and Biogeography, 18, 416-425. |
2 | Capinha C, Essl F, Seebens H, Moser D, Pereira HM (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348, 1248-1251. |
45 | Vavrek MJ (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14, 50-64. |
46 | Wang D, Wang XA, Guo H, Wang SX, Zheng WN, Liu SL (2013) Effect of species disperal and environmental factors on species assemblages in grassland communities. Acta Ecologica Sinica, 33, 4409-4415. (in Chinese with English abstract) |
3 | Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25, 319-322. |
4 | Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract) |
46 | [王丹, 王孝安, 郭华, 王世雄, 郑维娜, 刘史力 (2013) 环境和扩散对草地群落构建的影响. 生态学报, 33, 4409-4415.] |
47 | Wang D, Geng ZC, Yu D, He WX, Hou L (2014) Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains. Chinese Jounal of Applied Ecology, 25, 1569-1577. (in Chinese with English abstract) |
4 | [陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.] |
5 | Donoghue MJ (2008) Phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences, USA, 105, 11549-11555. |
47 | [王棣, 耿增超, 佘雕, 和文祥, 侯琳 (2014) 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征. 应用生态学报, 25, 1569-1577.] |
48 | Wang ZH, Fang JY, Tang ZY, Lin X (2010) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132. |
6 | Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391-1416. |
7 | Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA, 101, 7651-7656. |
49 | Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644. |
50 | Xiao ZS, Wang YS, Zhang ZB (2001) Seed bank and the factors influencing it for three Fagaceae species in Dujiangyan Region, Sichuan. Biodiversity Science, 9, 373-381. (in Chinese with English abstract) |
8 | Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19. |
9 | Götzenberger L, Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 87, 111-127. |
10 | Han XH, Wen LF, Liu Y, Wang Z (2010) Current situation of forest resources and management measures for Matoutan Forestry Bureau. Shaanxi Forest Science and Technology, (4), 59-61. (in Chinese with English abstract) |
[韩星海, 汶录凤, 刘勇, 王周 (2010) 马头滩林业局森林资源现状分析. 陕西林业科技, (4), 59-61.] | |
11 | Hawkins BA, Rodríguez MÁ, Weller SG (2011) Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography, 38, 1253-1266. |
12 | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
13 | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869. |
14 | Jurasinski G (2007) Simba: a collection of functions for similarity calculation of binary data R package Version 0.2-5.(accessed on 2016-07-20 |
15 | Körner C (2007) The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22, 569-574. |
16 | Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029-2053. |
17 | Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333. |
18 | Legendre P, Legendre LFJ (1998) Numerical Ecology.Elsevier, Amsterdam. |
19 | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90, 663-674. |
20 | Lennon JJ, Koleff P, Greenwood J, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. |
21 | Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Grytnes JA (2010) Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE, 5, e15734. |
22 | Lenoir J, Virtanen R, Oksanen J, Oksanen L, Luoto M, Grytnes JA, Svenning JC (2012) Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Global Ecology and Biogeography, 21, 851-860. |
23 | Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 188, 117-131. |
24 | Liu QF, Kang MY, Liu QR (2006) Quantitative classification and environmental interpretation of forest tree species in Hungou, Zhongtiao Mountain. Journal of Plant Ecology (Chinese Version), 30, 383-391. (in Chinese with English abstract) |
[刘秋锋, 康慕谊, 刘全儒 (2006) 中条山混沟地区森林乔木种的数量分类与环境解释. 植物生态学报, 30, 383-391.] | |
25 | Liu Y, Tang ZY, Fang JY (2015) Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broad-leaved forests in China. Applied Vegetation Science, 18, 34-42. |
26 | Lu P, Jin Y, Chen JH, Li MH, Yu MJ (2013) Influence of geographical distance and topographic difference on β diversity in two large-scale forest dynamics plots. Biodiversity Science, 21, 554-563. (in Chinese with English abstract) |
50 | [肖治术, 王玉山, 张知彬 (2001) 都江堰地区三种壳斗科植物的种子库及其影响因素研究. 生物多样性, 9, 373-381.] |
26 | [卢品, 金毅, 陈建华, 李铭红, 于明坚 (2013) 地理距离和地形差异对两个大型森林动态样地β多样性的影响. 生物多样性, 21, 554-563.] |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[4] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[5] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[6] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[7] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[8] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[9] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[10] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[11] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[12] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[13] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[14] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[15] | 曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 赵航, 朱威霖, 王健铭, 李景文. 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响[J]. 生物多样性, 2022, 30(11): 22029-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn