生物多样性 ›› 2024, Vol. 32 ›› Issue (4): 23406. DOI: 10.17520/biods.2023406 cstr: 32101.14.biods.2023406
李斌1,2,3(), 宋鹏飞1,2,3, 顾海峰1,3, 徐波1,2,3, 刘道鑫4, 江峰1,3, 梁程博1,2,3, 张萌1,2,3, 高红梅1,3, 蔡振媛1,3,*()(), 张同作1,3,*()()
收稿日期:
2023-10-24
接受日期:
2024-02-13
出版日期:
2024-04-20
发布日期:
2024-04-17
通讯作者:
* E-mail: 基金资助:
Bin Li1,2,3(), Pengfei Song1,2,3, Haifeng Gu1,3, Bo Xu1,2,3, Daoxin Liu4, Feng Jiang1,3, Chengbo Liang1,2,3, Meng Zhang1,2,3, Hongmei Gao1,3, Zhenyuan Cai1,3,*()(), Tongzuo Zhang1,3,*()()
Received:
2023-10-24
Accepted:
2024-02-13
Online:
2024-04-20
Published:
2024-04-17
Contact:
* E-mail: 摘要:
昆仑山脉独特的地理位置和气候条件孕育了诸多适应高海拔、寒旱气候的特有鸟类物种。为揭示昆仑山青海片区内鸟类群落在不同季节和海拔梯度的多样性分布格局及环境驱动因素, 我们于2021年12月(冬季)和2022年7月(夏季)在当地选取102个样方, 通过样线法对鸟类多样性进行了本底调查, 并选取了不同的气候和人为干扰因子拟合多样性指数与因子之间的非线性关系。结果表明: (1)昆仑山青海片区野外调查过程中共记录到鸟类14目31科59属87种, 其中国家一级重点保护野生鸟类5种, 国家二级重点保护野生鸟类11种, 该地区新分布鸟类8种; (2)鸟类群落多样性分布格局分析结果显示, 夏季多样性显著高于冬季, 草甸和草原生境的鸟类群落多样性显著高于其他生境, 冬夏季鸟类群落多样性指数与海拔梯度变化趋势均呈单峰型; (3)气候因素驱动鸟类多样性指数呈现季节性差异, 最冷季度降水量对夏季物种丰富度指数影响最大, 冬季为年降水量; 此外, 等温性和温度季节性对冬夏季Shannon-Wiener多样性指数和Simpson多样性指数影响最大。本研究揭示了水资源和稳定的气候对昆仑山青海片区鸟类群落多样性的重要性, 为昆仑山青海片区鸟类资源保护与管理以及未来国家公园的规划建设提供了数据支持。
李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作 (2024) 昆仑山青海片区鸟类群落多样性格局及其驱动因素. 生物多样性, 32, 23406. DOI: 10.17520/biods.2023406.
Bin Li, Pengfei Song, Haifeng Gu, Bo Xu, Daoxin Liu, Feng Jiang, Chengbo Liang, Meng Zhang, Hongmei Gao, Zhenyuan Cai, Tongzuo Zhang (2024) Bird community diversity patterns and their drivers in the Qinghai region of Kunlun Mountains. Biodiversity Science, 32, 23406. DOI: 10.17520/biods.2023406.
图1 昆仑山青海片区鸟类群落多样性调查样方分布图
Fig. 1 Survey grids of bird community diversity in the Qinghai region of Kunlun Mountains. Summer grids were surveyed exclusively during the summer season. Winter grids were surveyed exclusively during the winter season. Both season grids were surveyed during both the winter and summer.
海拔梯度 Elevation gradient | 草甸 Meadow | 草原 Grassland | 高山植被 Alpine | 灌丛 Shrubland | 荒漠 Desert | 其他植被 Other | 总计 Total |
---|---|---|---|---|---|---|---|
3,000-3,500 m | 0 | 50.0 | 0 | 0 | 27.8 | 11.5 | 19.6 |
3,500-4,000 m | 16.7 | 31.3 | 0 | 0 | 21.2 | 7.7 | 22.3 |
4,000-4,500 m | 19.6 | 30.3 | 0 | 0 | 22.6 | 11.8 | 24.0 |
4,500-5,000 m | 3.8 | 13.6 | 20.0 | 0 | 0 | 10.5 | 8.7 |
> 5,000 m | 0 | 0 | 0 | 0 | 0 | 8.3 | 4.5 |
总计 Total | 10.5 | 24.5 | 11.8 | 0 | 61.7 | 10.3 | 17.7 |
表1 昆仑山青海片区不同海拔植被类型中调查样方占有效样方比例(%)
Table 1 Proportion of surveyed to effective grid across vegetation types at different elevation gradients in the Qinghai region of Kunlun Mountains (%)
海拔梯度 Elevation gradient | 草甸 Meadow | 草原 Grassland | 高山植被 Alpine | 灌丛 Shrubland | 荒漠 Desert | 其他植被 Other | 总计 Total |
---|---|---|---|---|---|---|---|
3,000-3,500 m | 0 | 50.0 | 0 | 0 | 27.8 | 11.5 | 19.6 |
3,500-4,000 m | 16.7 | 31.3 | 0 | 0 | 21.2 | 7.7 | 22.3 |
4,000-4,500 m | 19.6 | 30.3 | 0 | 0 | 22.6 | 11.8 | 24.0 |
4,500-5,000 m | 3.8 | 13.6 | 20.0 | 0 | 0 | 10.5 | 8.7 |
> 5,000 m | 0 | 0 | 0 | 0 | 0 | 8.3 | 4.5 |
总计 Total | 10.5 | 24.5 | 11.8 | 0 | 61.7 | 10.3 | 17.7 |
图3 昆仑山青海片区鸟类群落不同季节(a-c)、不同海拔区间(d-f)、不同生境(g-i)的多样性分布格局。组间差异显著性采用秩和检验方法。* P < 0.05; ** P < 0.01; *** P < 0.001; ns: P > 0.05。
Fig. 3 Bird community diversity distribution pattern of different season (a-c), different elevation (d-f), and different habitat (g-i) in the Qinghai region of Kunlun Mountains. The significance of intergroup differences was assessed using the Wilcoxon rank-sum test. * P < 0.05; ** P < 0.01; *** P < 0.001; ns, P > 0.05.
图4 广义加性模型的调整后决定系数R²评估每个变量对不同季节鸟类群落多样性的重要性。bio1: 年平均气温; bio2: 平均气温日较差; bio3: 等温性; bio4: 温度季节性; bio5: 最热月份最高温度; bio6: 最冷月份最低温度; bio7: 气温年较差; bio8: 最湿季度平均温度; bio9: 最干季度平均温度; bio10: 最暖季度平均温度; bio11: 最冷季度平均温度; bio12: 年降水量; bio13: 最湿月份降水量; bio14: 最干月份降水量; bio15: 降水量季节性变化; bio16: 最湿季度降水量; bio17: 最干季度降水量; bio18: 最暖季度降水量; bio19: 最冷季度降水量; precs: 夏季平均降水量; precw: 冬季平均降水量; tavgs: 夏季平均温度; tavgw: 冬季平均温度; GDP: 国内生产总值; pop: 人口密度。
Fig. 4 The importance of variables for the bird community diversity across seasons was assessed using GAM models based on adjusted R² (coefficient of determination). bio1, Annual mean temperature; bio2, Mean diurnal range; bio3, Isothermality; bio4, Temperature seasonality; bio5, Max temperature of warmest month; bio6, Min temperature of coldest month; bio7, Temperature annual range; bio8, Mean temperature of wettest quarter; bio9, Mean temperature of driest quarter; bio10, Mean temperature of warmest quarter; bio11, Mean temperature of coldest quarter; bio12, Annual precipitation; bio13, Precipitation of wettest month; bio14, Precipitation of driest month; bio15, Precipitation seasonality; bio16, Precipitation of wettest quarter; bio17, Precipitation of driest quarter; bio18, Precipitation of warmest quarter; bio19, Precipitation of coldest quarter; precs, Average precipitation of summer; precw, Average precipitation of winter; tavgs, Average temperature of summer; tavgw, Average temperature of winter; GDP, Gross domestic product; pop, Population density.
图5 解释度最高环境因子对昆仑山青海片区鸟类群落不同季节多样性指数的非线性影响。 (a-c): 夏季鸟类群落多样性的潜在非线性关系。(d-f): 冬季鸟类群落多样性的潜在非线性关系。P值为各预测变量的显著性检验结果。
Fig. 5 The nonlinear impact of environmental factors with the highest explanatory power on bird community diversity in the Qinghai region of Kunlun Mountains across different seasons. (a-c): Summer bird community diversity; (d-f): Winter bird community diversity. P values represent the significance test results for each predictor variable.
[1] |
Carrera L, Pavia M, Varela S (2022) Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds. Scientific Reports, 12, 10813.
DOI PMID |
[2] |
Cooper NW, Sherry TW, Marra PP (2015) Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird. Ecology, 96, 1933-1942.
PMID |
[3] | Dai YC, Wang XL, Ma GQ, Hou YS, Li DQ (2018) Diversity characteristics of waterfowl community in Qinghai Lake National Nature Reserve. Forest Resources Management, (2), 74-80. (in Chinese with English abstract) |
[代云川, 王秀磊, 马国青, 侯元生, 李迪强 (2018) 青海湖国家级自然保护区水鸟群落多样性特征. 林业资源管理, (2), 74-80.] | |
[4] | Dixon P (2003) VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930. |
[5] | Du WB, Jia P, Du GZ (2022) Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains. Plant Diversity, 44, 30-38. |
[6] | Ernst LM, Tscharntke T, Batáry P (2017) Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biological Conservation, 216, 51-59. |
[7] | Fang XM, Lü LQ, Yang SL, Li JJ, An ZS, Jiang PA, Chen XL (2002) Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in West China. Science China: Earth Sciences, 45, 289-299. |
[8] | Fontana CS, Burger MI, Magnusson WE (2011) Bird diversity in a subtropical South-American City: Effects of noise levels, arborisation and human population density. Urban Ecosystems, 14, 341-360. |
[9] | Gagné SA, Sherman PJ, Singh KK, Meentemeyer RK (2016) The effect of human population size on the breeding bird diversity of urban regions. Biodiversity and Conservation, 25, 653-671. |
[10] | Gao HM, Cai ZY, Qin W, Huang YG, Wu T, Chi XW, Zhang JJ, Miao ZY, Song PF, Lian XM, Zhang TZ (2019) Species diversity of birds in the Three-River-Source National Park. Acta Ecologica Sinica, 39, 8254-8270. (in Chinese with English abstract) |
[高红梅, 蔡振媛, 覃雯, 黄岩淦, 吴彤, 迟翔文, 张婧捷, 苗紫燕, 宋鹏飞, 连新明, 张同作 (2019) 三江源国家公园鸟类物种多样性研究. 生态学报, 39, 8254-8270.] | |
[11] | Gaston KJ (2022) Birds and ecosystem services. Current Biology, 32, R1163-R1166. |
[12] |
Gaüzère P, Jiguet F, Devictor V (2015) Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Global Change Biology, 21, 3367-3378.
DOI PMID |
[13] | Ghimire A, Rokaya MB, Timsina B, Bílá K, Shrestha UB, Chalise MK, Kindlmann P (2021) Diversity of birds recorded at different altitudes in central Nepal Himalayas. Ecological Indicators, 127, 107730. |
[14] | Gorelick R (2006) Combining richness and abundance into a single diversity index using matrix analogues of Shannon’s and Simpson’s indices. Ecography, 29, 525-530. |
[15] | Guo K, Li BS, Zheng D (1997) Floristic composition and distribution in the Karakorum-Kunlun Mountains. Acta Phytoecologica Sinica, 21, 105-114. (in Chinese with English abstract) |
[郭柯, 李渤生, 郑度 (1997) 喀喇昆仑山-昆仑山地区植物区系组成和分布规律的研究. 植物生态学报, 21, 105-114.] | |
[16] |
Haest B, Hüppop O, van de Pol M, Bairlein F (2019) Autumn bird migration phenology: A potpourri of wind, precipitation and temperature effects. Global Change Biology, 25, 4064-4080.
DOI PMID |
[17] | Hanz DM, Böhning-Gaese K, Ferger SW, Fritz SA, Neuschulz EL, Quitián M, Santillán V, Töpfer T, Schleuning M (2019) Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 46, 291-303. |
[18] |
He XL, Luo K, Brown C, Lin LX (2018) A taxonomic, functional, and phylogenetic perspective on the community assembly of passerine birds along an elevational gradient in Southwest China. Ecology and Evolution, 8, 2712-2720.
DOI PMID |
[19] | Hu KK, Ailihazi W, Danierhan S (2023) Ecological base flow characteristics of typical rivers on the north slope of Kunlun Mountains under climate change. Atmosphere, 14, 842. |
[20] | Huang W, Xia L, Yang QS, Feng ZJ (2008) Distribution pattern and zoogeographical division of mammals on the Qinghai-Tibet Plateau. Acta Theriologica Sinica, 28, 375-394. (in Chinese with English abstract) |
[黄薇, 夏霖, 杨奇森, 冯祚建 (2008) 青藏高原兽类分布格局及动物地理区划. 兽类学报, 28, 375-394.] | |
[21] | Ionescu DT, Hodor CV, Petritan IC (2020) Artificial wetlands as breeding habitats for colonial waterbirds within central Romania. Diversity, 12, 371. |
[22] | Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature, 491, 444-448. |
[23] | Jiang ZG (2021) China’s Red List of Biodiverstiy:Vertebrates. Science Press, Beijing. (in Chinese and in English) |
[蒋志刚 (2021) 中国生物多样性红色名录: 脊椎动物卷. 科学出版社, 北京.] | |
[24] | Kuhn M (2008) Building predictive models in R using the caret package. Journal of Statistical Software, 28, 1-26. |
[25] | La Sorte FA, Hochachka WM, Farnsworth A, Sheldon D, Van Doren BM, Fink D, Kelling S (2015) Seasonal changes in the altitudinal distribution of nocturnally migrating birds during autumn migration. Royal Society Open Science, 2, 150347. |
[26] | Li SH, Zhang GG, Liu DP, Hou YQ, Jiang HX, Lu J (2015) Spatiotemporal distribution and community characteristics of shorebirds at Qinghai Lake, China. Chinese Journal of Zoology, 50, 677-685. (in Chinese with English abstract) |
[李淑红, 张国钢, 刘冬平, 侯韵秋, 江红星, 陆军 (2015) 青海湖鸻鹬类群落特征和时空分布. 动物学杂志, 50, 677-685.] | |
[27] | Liang CX, Li B, Zhang YW, Yang F, Yang GS, Wang ZH, Pan B (2017) Bird community structure and seasonal variation in Wulanchabu, Inner Mongolia, China. Chinese Journal of Ecology, 36, 94-103. (in Chinese with English abstract) |
[梁晨霞, 李波, 张雨薇, 杨帆, 杨贵生, 王志恒, 潘斌 (2017) 内蒙古乌兰察布地区鸟类群落结构及季节变化. 生态学杂志, 36, 94-103.] | |
[28] | Liu BR (2021) Recent advances in altitudinal distribution patterns of biodiversity. Ecology and Environmental Sciences, 30, 438-444. (in Chinese with English abstract) |
[刘秉儒 (2021) 生物多样性的海拔分布格局研究及进展. 生态环境学报, 30, 438-444.]
DOI |
|
[29] | Liu H, Jiang GS, Li H (2015) A comparative study on four survey methods used in ungulate population size estimation in winter in North China. Acta Ecologica Sinica, 35, 3076-3086. (in Chinese with English abstract) |
[刘辉, 姜广顺, 李惠 (2015) 北方冬季有蹄类动物4种数量调查方法的比较. 生态学报, 35, 3076-3086.] | |
[30] | Liu T, Liu HY, Yang YX (2023) Uncovering the determinants of biodiversity hotspots in China: Evidence from the drivers of multiple diversity metrics on insect assemblages and implications for conservation. Science of the Total Environment, 880, 163287. |
[31] | Liu W, Wang X (2018) Species and Distribution of Vertebrates in Qinghai Province. Qinghai People’s Publishing House, Xining. (in Chinese) |
[刘伟, 王溪 (2018) 青海脊椎动物种类与分布. 青海人民出版社, 西宁.] | |
[32] | Luo K, Wu ZL, Bai HT, Wang ZJ (2019) Bird diversity and waterbird habitat preferences in relation to wetland restoration at Dianchi Lake, south-west China. Avian Research, 10, 21. |
[33] | Luo YY, Liu Q, Zhong Y, Han W (2023) Remote-sensing- based monitoring the dynamics of Kyagar Glacial Lake in the upstream section of Yarkant River, North Karakoram. Land Degradation & Development, 34, 610-623. |
[34] | Ma M, Hu BW, Mei Y, McCarthy T (2010) Survey on bird species and analysis on bird diversity in the central Kunlun Mountains in the early winter. Arid Zone Research, 27, 230-235. (in Chinese with English abstract) |
[马鸣, 胡宝文, 梅宇, McCarthy T (2010) 昆仑山中段初冬鸟类调查及其多样性分析. 干旱区研究, 27, 230-235.] | |
[35] | Ma M, Zhang T, Zhang HB, Zhang X, Chen Y, Li WD, Liu M, Ding P, Xu F, Maierdan T (2013) Survey of avifauna in Kunlun and Altun mountains. Chinese Journal of Zoology, 48, 65-74. (in Chinese with English abstract) |
[马鸣, 张同, 张会斌, 张翔, 陈莹, 李维东, 刘鸣, 丁鹏, 徐峰, 买尔旦∙吐尔干 (2013) 阿尔金山-昆仑山鸟类区系调查. 动物学杂志, 48, 65-74.] | |
[36] | Mao TX, Hao JW, Huang X, Lu BG, You ZY, Liu W (2023) Bird diversity and differences in summer and autumn at Daocheng-Yading Airport, Sichuan Province, China. Journal of Southwest Minzu University (Natural Science Edition), 49, 1-9. (in Chinese with English abstract) |
[毛天翔, 郝建伟, 黄兴, 鲁碧耕, 油志远, 刘伟 (2023) 稻城亚丁机场鸟类多样性及夏秋季差异. 西南民族大学学报(自然科学版), 49, 1-9.] | |
[37] |
May PG (1982) Secondary succession and breeding bird community structure: Patterns of resource utilization. Oecologia, 55, 208-216.
DOI PMID |
[38] | McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360. |
[39] | Müller M, Spaar R, Schifferli L, Jenni L (2005) Effects of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). Journal of Ornithology, 146, 14-23. |
[40] | orthwest Institute of Plateau Biology, Chinese Academy of Sciences(1989) Economic Fauna of Qinghai. Qinghai People’s Publishing House, Xining. (in Chinese) |
[中国科学院西北高原生物研究所(1989) 青海经济动物志. 青海人民出版社, 西宁.] | |
[41] | Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens H, Szocs E, Wagner HH (2013) Package ‘vegan’. Community Ecology Package, 2, 1-295. |
[42] | Peet RK (1975) Relative diversity indices. Ecology, 56, 496-498. |
[43] | Penjor U, Jamtsho R, Sherub S (2022) Anthropogenic land-use change shapes bird diversity along the eastern Himalayan altitudinal gradient. Journal of Applied Ecology, 59, 847-859. |
[44] | Phifer CC, Knowlton JL, Webster CR, Flaspohler DJ, Licata JA (2017) Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodiversity and Conservation, 26, 3073-3101. |
[45] |
Philpott SM, Soong O, Lowenstein JH, Pulido AL, Lopez DT, Flynn DFB, DeClerck F (2009) Functional richness and ecosystem services: Bird predation on arthropods in tropical agroecosystems. Ecological Applications, 19, 1858-1867.
PMID |
[46] |
Riddell EA, Iknayan KJ, Hargrove L, Tremor S, Patton JL, Ramirez R, Wolf BO, Beissinger SR (2021) Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, 371, 633-636.
DOI PMID |
[47] |
Rockwell SM, Wunderle JM Jr, Sillett TS, Bocetti CI, Ewert DN, Currie D, White JD, Marra PP (2017) Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia, 183, 715-726.
DOI PMID |
[48] | Rutt CL, Jirinec V, Cohn-Haft M, Laurance WF, Stouffer PC (2019) Avian ecological succession in the Amazon: A long-term case study following experimental deforestation. Ecology and Evolution, 9, 13850-13861. |
[49] | Scott JM, Csuti B, Jacobi JD, Estes JE (1987) Species richness. BioScience, 37, 782-788. |
[50] | Scridel D, Brambilla M, Martin K, Lehikoinen A, Iemma A, Matteo A, Jähnig S, Caprio E, Bogliani G, Pedrini P, Rolando A, Arlettaz R, Chamberlain D (2018) A review and meta-analysis of the effects of climate change on Holarctic Mountain and upland bird populations. Ibis, 160, 489-515. |
[51] |
Sekercioglu CH (2012) Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. Journal of Ornithology, 153, 153-161.
DOI |
[52] | Sekercioglu CH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biological Conservation, 148, 1-18. |
[53] | Seress G, Liker A (2015) Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 61, 373-408. |
[54] | Seymour CL, Simmons RE, Joseph GS, Slingsby JA (2015) On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems, 18, 971-984. |
[55] |
Somveille M, Manica A, Rodrigues ASL (2019) Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography, 42, 225-236.
DOI |
[56] | Song QH, Ding H, Yu YH (2019) Empirical study on agricultural economic development in various regions of Qinghai Province. Northern Economy and Trade, 12, 49-50. (in Chinese) |
[宋启红, 丁桦, 余钰华 (2019) 青海省各地区农业经济发展情况实证研究. 北方经贸, 12, 49-50.] | |
[57] | Sun HY, Tang XP, Zhou SC, Wang ZC, Lu XD (2011) Monitoring techniqual of big plot sample method for ungulate and other mammal species. Forestry Science & Technology, 36(6), 33-35. (in Chinese with English abstract) |
[孙海义, 唐小平, 周绍春, 王志臣, 卢向东 (2011) 有蹄类等哺乳动物的大样方监测技术. 林业科技, 36(6), 33-35.] | |
[58] | Sutherland WJ, Newton I, Green R (2004) Bird Ecology and Conservation:A Handbook of Techniques. Oxford University Press, Oxford. |
[59] |
Vollstädt MGR, Albrecht J, Böhning-Gaese K, Hemp A, Howell KM, Kettering L, Neu A, Neuschulz EL, Quitián M, Santillán VE, Töpfer T, Schleuning M, Fritz SA (2020) Direct and plant-mediated effects of climate on bird diversity in tropical mountains. Ecology and Evolution, 10, 14196-14208.
DOI PMID |
[60] |
Wang T, Zhou LZ (2022) The spatial-temporal patterns of bird diversity and its determinants in the small wetlands in Hefei City. Biodiversity Science, 30, 21445. (in Chinese with English abstract)
DOI |
[汪婷, 周立志 (2022) 合肥市小微湿地鸟类多样性的时空格局及其影响因素. 生物多样性, 30, 21445.]
DOI |
|
[61] | Wang XG, Zhang TZ (2022) Illustrated Handbook of Wildlife in the Three Rivers Source. Qinghai People’s Publishing House, Xining. (in Chinese) |
[王湘国, 张同作 (2022) 三江源野生动物图谱. 青海人民出版社, 西宁.] | |
[62] | Wood SN (2017) Generalized Additive Models: An Introduction with R, 2nd edn. Chapman and Hall, New York. |
[63] | Wu YJ, Yang QS, Xia L, Feng ZJ, Zhou HM (2012) Species diversity and distribution pattern of non-volant small mammals along the elevational gradient on eastern slope of Gongga Mountain. Acta Ecologica Sinica, 32, 4318-4328. (in Chinese with English abstract) |
[吴永杰, 杨奇森, 夏霖, 冯祚建, 周华明 (2012) 贡嘎山东坡非飞行小型兽类物种多样性的垂直分布格局. 生态学报, 32, 4318-4328.] | |
[64] | Wu YL, Sun JQ, Hou YS, Lu FG (2011) Survey Procapra praewalskii and birds species Qinhai Lake area. Qinghai Prataculture, 20(4), 39-46. (in Chinese with English abstract) |
[吴永林, 孙建青, 侯元生, 陆福根 (2011) 青海湖区普氏原羚与鸟类种群监测. 青海草业, 20(4), 39-46.] | |
[65] | Xie Y, Li DM, MacKinnon J (2002) Preliminary researches on bio-geographical divisions of China. Acta Ecologica Sinica, 22, 1599-1615. (in Chinese with English abstract) |
[解焱, 李典谟, MacKinnon J (2002) 中国生物地理区划研究. 生态学报, 22, 1599-1615.] | |
[66] | Xue YD, Li J, Hu Y, Ma L, Qian WQ, Yan PF, Yang MW, Chen DX, Wu B, Li DQ (2019) Camera-trapping survey of the mammals and birds in the Qilian Mountain National Park (Qinghai area), China. Acta Theriologica Sinica, 39, 466-475. (in Chinese with English abstract) |
[薛亚东, 李佳, 胡杨, 马莉, 钱卫强, 严频发, 杨明伟, 陈大祥, 吴波, 李迪强 (2019) 利用红外相机调查祁连山国家公园(青海片区)兽类和鸟类多样性. 兽类学报, 39, 466-475.] | |
[67] | Yang SG, Li XY, Lei JQ, Zhu JT (2009) Investigation of vegetation on shallow mountain area of northern slope in middle section of Kunlun Mountain. Acta Botanica Boreali-Occidentalia Sinica, 29, 809-817. (in Chinese with English abstract) |
[杨尚功, 李向义, 雷加强, 朱军涛 (2009) 昆仑山前山带植物群落调查及相似性初步研究. 西北植物学报, 29, 809-817.] | |
[68] | Zamora-Marín JM, Zamora-López A, Jiménez-Franco MV, Calvo JF, Oliva-Paterna FJ (2021) Small ponds support high terrestrial bird species richness in a Mediterranean semiarid region. Hydrobiologia, 848, 1623-1638. |
[69] | Zhang CY (2013) Reflections on the ecological security pattern in Haixi Prefecture, Qinghai Province. Sichuan Architecture, 33(5), 37-40. (in Chinese) |
[张超越 (2013) 关于青海省海西州生态安全格局的思考. 四川建筑, 33(5), 37-40.] | |
[70] | Zhang JL, Li W, Zheng YL (2022) Weather classification and radar echo characteristics of short-term heavy precipitation in the northern Kunlun Mountains. Desert and Oasis Meteorology, 16, 1-9. (in Chinese with English abstract) |
[张俊兰, 李伟, 郑育琳 (2022) 昆仑山北坡短时强降水天气分型及雷达回波特征分析. 沙漠与绿洲气象, 16, 1-9.] | |
[71] | Zhang YX, Li Y, Zhu GR (2019) The effects of altitude on temperature, precipitation and climatic zone in the Qinghai- Tibet Plateau. Journal of Glaciology and Geocryology, 41, 505-515. (in Chinese with English abstract) |
[张宇欣, 李育, 朱耿睿 (2019) 青藏高原海拔要素对温度、降水和气候型分布格局的影响. 冰川冻土, 41, 505-515.]
DOI |
|
[72] | Zhao L, Du MX, Du W, Guo JH, Liao ZY, Kang X, Liu QY (2022) Evaluation of the carbon sink capacity of the proposed Kunlun Mountain National Park. International Journal of Environmental Research and Public Health, 19, 9887. |
[73] | Zhao RM, Zhang H, An LZ (2020) Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environmental Science and Pollution Research, 27, 17339-17349. |
[74] | Zhao XB, Che XL, Ning T, Zou FS (2023) Distribution of birds in the high-altitude area of Mount Everest. Integrative Zoology, 18, 199-204. |
[75] | Zheng D (1999) Physical Geography of the Karakorum-Kunlun Mountains. Science Press, Beijing. (in Chinese) |
[郑度 (1999) 喀喇昆仑-昆仑山地区自然地理. 科学出版社, 北京.] | |
[76] |
Zheng Z, Gong DJ, Sun CX, Li XJ, Li WJ (2014) Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation. Biodiversity Science, 22, 596-607. (in Chinese with English abstract)
DOI |
[郑智, 龚大洁, 孙呈祥, 李晓军, 李万江 (2014) 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释. 生物多样性, 22, 596-607.]
DOI |
[1] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[2] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[3] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[4] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[5] | 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12): 1570-1580. |
[6] | 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589. |
[7] | 郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨. 北热带喀斯特季节性雨林土壤和6个常见树种凋落物的C、N、P化学计量学特征[J]. 生物多样性, 2017, 25(10): 1085-1094. |
[8] | 冯晨光, 童超, 张仁意, 李国刚, 王贺崐元, 汤永涛, 张存芳, 赵凯. 青藏高原东北部边缘高原鳅属鱼类的 多样性与分布格局[J]. 生物多样性, 2017, 25(1): 53-61. |
[9] | 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1): 3-10. |
[10] | 杨阳, 韩杰, 刘晔, 忠永茨仁, 石松林, 斯那此里, 许玥, 应凌霄, 张婉君, 沈泽昊. 三江并流地区干旱河谷植物物种多样性海拔梯度格局比较[J]. 生物多样性, 2016, 24(4): 440-452. |
[11] | 刘芳, 李琪, 申聪聪, 褚海燕, 梁文举. 长白山不同海拔梯度裸肉足虫群落分布特征[J]. 生物多样性, 2014, 22(5): 608-617. |
[12] | 郑智, 龚大洁, 孙呈祥, 李晓军, 李万江. 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释[J]. 生物多样性, 2014, 22(5): 596-607. |
[13] | 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷. 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构[J]. 生物多样性, 2014, 22(4): 438-448. |
[14] | 李巧燕, 王襄平. 长江三峡库区物种多样性的垂直分布格局: 气候、几何限制、面积及地形异质性的影响[J]. 生物多样性, 2013, 21(2): 141-152. |
[15] | 张婉君, 卢绮妍, 梁军, 沈泽昊. 台湾维管束植物物种丰富度和种域宽度的海拔格局及对Rapoport法则的检验[J]. 生物多样性, 2010, 18(3): 312-322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn