生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22492. DOI: 10.17520/biods.2022492
所属专题: 土壤生物与土壤健康
杜芳1,2, 荣晓莹1,*(), 徐鹏1,2, 尹本丰1, 张元明1
收稿日期:
2022-08-25
接受日期:
2022-10-18
出版日期:
2023-02-20
发布日期:
2022-12-30
通讯作者:
*荣晓莹, E-mail: rongxy@ms.xjb.ac.cn
基金资助:
Fang Du1,2, Xiaoying Rong1,*(), Peng Xu1,2, Benfeng Yin1, Yuanming Zhang1
Received:
2022-08-25
Accepted:
2022-10-18
Online:
2023-02-20
Published:
2022-12-30
Contact:
*Xiaoying Rong, E-mail: rongxy@ms.xjb.ac.cn
摘要:
明确荒漠降水对细菌群落多样性和群落构建过程的影响, 有助于进一步认识荒漠土壤细菌群落结构和功能对降水变化的响应及反馈机制。基于古尔班通古特沙漠区域降水梯度上的土壤细菌群落高通量测序数据, 比较分析了降水差异对总细菌、高丰度及低丰度细菌类群多样性和群落组成的影响, 使用零模型(null model)方法分析确定性过程和随机性过程对细菌群落构建的相对重要性。结果表明: 绿弯菌门是高丰度与低丰度细菌类群优势细菌门。沿降水梯度总细菌和高丰度细菌类群的丰富度及Shannon多样性指数无显著差异, 随降水减少, 低丰度细菌类群的丰富度和Shannon多样性显著降低(P < 0.05); 降水差异显著影响不同丰度细菌类群的群落组成, 且沿降水梯度, 低丰度细菌的群落变异与物种空间周转大于高丰度与总细菌类群, 表明荒漠不同丰度细菌类群差异响应区域小范围降水梯度, 低丰度细菌类群对区域降水变化具有强敏感性, 而总细菌和高丰度细菌类群对降水变化具有较强的抵抗力; 零模型分析显示, 扩散限制主导古尔班通古特沙漠不同降水样点细菌的群落构建过程, 而荒漠低丰度细菌类群同时还受到强的异质选择作用(43.0%), 表明荒漠降水差异增强了低丰度细菌的环境选择作用或者生物间的竞争作用。另外, 空间地理距离决定了不同降水梯度总细菌群落的构建过程, 而年均降水量对平衡低丰度细菌类群的确定性过程与随机性过程的相对重要性具有重要作用。综上所述, 古尔班通古特沙漠小尺度的降水差异显著改变了荒漠表层土壤的细菌群落组成, 低丰度细菌敏感响应小尺度范围的降水差异, 有助于减缓荒漠细菌对环境变化响应的滞后性; 扩散限制对总细菌和高丰度细菌β多样性的决定作用比对低丰度细菌强, 显示空间地理距离对荒漠总细菌和高丰度细菌的物种周转解释率高于低丰度细菌, 而荒漠低丰度细菌的多样性分布和生态位偏好除受到空间地理尺度的影响外, 还具有更强的降水依赖性。
杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明 (2023) 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响. 生物多样性, 31, 22492. DOI: 10.17520/biods.2022492.
Fang Du, Xiaoying Rong, Peng Xu, Benfeng Yin, Yuanming Zhang (2023) Bacterial diversity and community assembly responses to precipitation in the Gurbantunggut Desert. Biodiversity Science, 31, 22492. DOI: 10.17520/biods.2022492.
图1 区域降水差异对不同丰度细菌群落结构的影响。(a)基于Bray-Curtis距离的细菌群落结构非度量多维尺度排序。(b)降水对细菌群落Bray-Curtis相异分布指数的影响, 不同字母表示Bray-Curtis相异分布指数在不同降水梯度间的差异显著(P < 0.05)。(c)系统发育距离-衰减曲线显示群落相似性(1 ? βMNTD)与采样点之间地理距离的关系。CNW: 彩南西; CNN: 彩南北; YZ: 一站; SXS: 石西南; SXE: 石西东。
Fig. 1 The structure of bacterial communities with different abundances differed along the precipitation gradient. (a) Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis similarity. (b) Effect of mean annual precipitation on the Bray-Curtis dissimilarity of bacterial communities, different letters indicate significant differences in Bray-Curtis dissimilarity between different precipitation gradients (P < 0.05). (c) Phylogenetic distance-decay curves showing community similarity (1 - βMNTD metric) against geographic distances between sampling sites.
图2 不同丰度细菌β多样性及其物种替换和物种嵌套组分。不同大写字母表示同一丰度细菌类群β多样性组分间差异显著, 不同小写字母表示不同丰度细菌类群β多样性组分间差异显著(P < 0.05)。
Fig. 2 β diversity and its components (replacement and nestedness) of whole, abundant and rare bacterial community. Different capital letters indicate significant differences among β-diversity components of bacterial taxa of the same abundance. Different lowercase letters indicate significant differences among β-diversity components of whole, abundant and rare bacterial taxa (P < 0.05).
图3 整个样带不同丰度细菌群落构建(a)及沿降水梯度不同样点细菌群落构建过程的比例(b)。群落构建的比例包括确定性过程(同质选择和异质选择)以及随机过程(扩散限制和同质扩散)的支配, 以及不受任何单一过程支配的(“非主导过程”)。CNW: 彩南西; CNN: 彩南北; YZ: 一站; SXS: 石西南; SXE: 石西东。
Fig. 3 The fraction of assembly mechanism in whole, abundant and rare bacterial subcommunities based on the null model. The percent of turnover in whole, abundant and rare bacterial community assembly governed primarily by various deterministic, including homogeneous and heterogeneous selection, and stochastic processes, including dispersal limitations and homogenizing dispersal, as well as the fraction that was not dominated by any single process (‘Undominated’).
变量 Variables | 控制变量 Controlled variables | R | P | |
---|---|---|---|---|
TP | Spatial + Environmental (excluding TP) | 0.03 | 0.633 | |
总细菌 Whole bacteria | Spatial | Environmental (excluding TP) + TP | 0.26 | 0.002** |
Environmental (excluding TP) | Spatial + TP | 0.06 | 0.226 | |
MAP | Spatial + Environmental (excluding MAP) | 0.357 | 0.001*** | |
高丰度细菌 Abundant bacteria | Spatial | Spatial + Environmental (excluding MAP) + MAP | 0.361 | 0.001*** |
Environmental (excluding MAP) | Spatial + MAP | 0.029 | 0.322 | |
MAP | Spatial + Environmental (excluding MAP) | 0.474 | 0.001*** | |
TP | Spatial + Environmental (excluding TP) | 0.012 | 0.395 | |
低丰度细菌 Rare bacteria | Spatial | Spatial + Environmental (excluding MAP) + MAP | 0.502 | 0.001*** |
Environmental (excluding MAP + TP) | Spatial + MAP + TP | 0.014 | 0.369 |
表1 不同丰度细菌群落βNTI与环境因子的Partial Mantel检验。粗体表示在P < 0.05水平上差异显著。
Table 1 Partial Mantel test of βNTI of whole, abundant and rare bacterial communities with environmental factors. Bold indicates a significant difference at the P < 0.05 level. ** P < 0.01; *** P < 0.001.
变量 Variables | 控制变量 Controlled variables | R | P | |
---|---|---|---|---|
TP | Spatial + Environmental (excluding TP) | 0.03 | 0.633 | |
总细菌 Whole bacteria | Spatial | Environmental (excluding TP) + TP | 0.26 | 0.002** |
Environmental (excluding TP) | Spatial + TP | 0.06 | 0.226 | |
MAP | Spatial + Environmental (excluding MAP) | 0.357 | 0.001*** | |
高丰度细菌 Abundant bacteria | Spatial | Spatial + Environmental (excluding MAP) + MAP | 0.361 | 0.001*** |
Environmental (excluding MAP) | Spatial + MAP | 0.029 | 0.322 | |
MAP | Spatial + Environmental (excluding MAP) | 0.474 | 0.001*** | |
TP | Spatial + Environmental (excluding TP) | 0.012 | 0.395 | |
低丰度细菌 Rare bacteria | Spatial | Spatial + Environmental (excluding MAP) + MAP | 0.502 | 0.001*** |
Environmental (excluding MAP + TP) | Spatial + MAP + TP | 0.014 | 0.369 |
图5 降水介导了不同丰度细菌群落构建中确定性和随机性过程相对重要性。水平虚线表示βNTI显著性阈值为+2和-2。
Fig. 5 Precipitation balances the relative importance of deterministic and stochastic in the community assembly of whole, abundant and rare bacterial communities. Horizontal-dashed lines indicate the βNTI significance thresholds of +2 and ?2.
图4 细菌β最近分类单元指数βNTI与年均降水量之间的Spearman相关性。ΔMAP表示样点和样点之间年均降水量的差异。
Fig. 4 Relationships between (β nearest taxon index, βNTI) and differences in MAP (mean annual precipitation) for the abundant and rare bacterial communities. ΔMAP indicate the differences of MAP between sample sites.
[1] |
Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60, 453-461.
DOI PMID |
[2] |
Cao P, Wang JT, Hu HW, Zheng YM, Ge Y, Shen JP, He JZ (2016) Environmental filtering process has more important roles than dispersal limitation in shaping large-scale prokaryotic beta diversity patterns of grassland soils. Microbial Ecology, 72, 221-230.
DOI PMID |
[3] | Chen BR, Xin XP, Zhu YX, Zhang HB (2007) Change and analysis of annual desertification and climate factors in Inner Mongolia using MODIS data. Remote Sensing Information, 22, 39-44, 104. (in Chinese with English abstract) |
[陈宝瑞, 辛晓平, 朱玉霞, 张宏斌 (2007) 内蒙古荒漠化年际动态变化及与气候因子分析. 遥感信息, 22, 39-44, 104.] | |
[4] |
Chen WM, Jiao S, Li QP, Du NN (2020) Dispersal limitation relative to environmental filtering governs the vertical small-scale assembly of soil microbiomes during restoration. Journal of Applied Ecology, 57, 402-412.
DOI URL |
[5] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[6] |
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
DOI PMID |
[7] | Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences, USA, 112, E1326-E1332. |
[8] | Friedmann EI, Galun M (1974) Desert algae, lichens, and fungi. Desert Biology, 2, 165-212. |
[9] | Gao GF, Peng D, Tripathi BM, Zhang YH, Chu HY (2020) Distinct community assembly processes of abundant and rare soil bacteria in coastal wetlands along an inundation gradient. mSystems, 5, e01150-20. |
[10] |
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10, 497-506.
DOI PMID |
[11] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI PMID |
[12] |
Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35-46.
DOI PMID |
[13] |
Jia X, Dini-Andreote F, Falcão Salles J (2018) Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 26, 738-747.
DOI PMID |
[14] |
Jiao S, Chen WM, Wei GH (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Molecular Ecology, 26, 5305-5317.
DOI PMID |
[15] |
Jiao S, Lu YH (2020a) Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biology, 26, 4506-4520.
DOI URL |
[16] |
Jiao S, Lu YH (2020b) Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environmental Microbiology, 22, 1052-1065.
DOI URL |
[17] |
Knelman JE, Nemergut DR (2014) Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Frontiers in Microbiology, 5, 424.
DOI PMID |
[18] |
Liang YT, Xiao X, Nuccio EE, Yuan MT, Zhang N, Xue K, Cohan FM, Zhou JZ, Sun B (2020) Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environmental Microbiology, 22, 1327-1340.
DOI PMID |
[19] |
Liu K, Xu K, Zhu CW, Liu BQ (2022) Diversity of marine heatwaves in the South China Sea regulated by ENSO phase. Journal of Climate, 35, 877-893.
DOI URL |
[20] |
Liu L, Zhu K, Krause SMB, Li SP, Wang X, Zhang ZC, Shen MW, Yang QS, Lian JY, Wang XH, Ye WH, Zhang J (2021) Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests. Soil Biology and Biochemistry, 154, 108144.
DOI URL |
[21] |
Liu LM, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. The ISME Journal, 9, 2068-2077.
DOI |
[22] |
Liu NN, Hu HF, Ma WH, Deng Y, Wang QG, Luo A, Meng JH, Feng XJ, Wang ZH (2021) Relative importance of deterministic and stochastic processes on soil microbial community assembly in temperate grasslands. Microorganisms, 9, 1929.
DOI URL |
[23] |
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 1272-1277.
DOI PMID |
[24] | Luo N, Liu ZC, Yu H, Liu T (2016) Regional differences in plant diversity in the southern Gurbantonggut Desert. Acta Ecologica Sinica, 36, 3572-3581. (in Chinese with English abstract) |
[罗宁, 刘尊驰, 于航, 刘彤 (2016) 古尔班通古特沙漠南部植物多样性的区域差异. 生态学报, 36, 3572-3581.] | |
[25] | Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: Diversity and biological activity. Frontiers in Microbiology, 6, 1541. |
[26] |
Naidoo Y, Valverde A, Pierneef RE, Cowan DA (2022) Differences in precipitation regime shape microbial community composition and functional potential in Namib Desert soils. Microbial Ecology, 83, 689-701.
DOI |
[27] | Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2, e00195-16. |
[28] |
Ni YY, Yang T, Ma YY, Zhang KP, Soltis PS, Soltis DE, Gilbert JA, Zhao YP, Fu CX, Chu HY (2021) Soil pH determines bacterial distribution and assembly processes in natural mountain forests of Eastern China. Global Ecology and Biogeography, 30, 2164-2177.
DOI URL |
[29] |
Ning DL, Yuan MT, Wu LW, Zhang Y, Guo X, Zhou XS, Yang YF, Arkin AP, Firestone MK, Zhou JZ (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11, 4717.
DOI PMID |
[30] | Pan HB, Gao H, Peng ZH, Chen BB, Chen S, Liu Y, Gu J, Wei XR, Chen WM, Wei GH, Jiao S (2022) Aridity threshold induces abrupt change of soil abundant and rare bacterial biogeography in dryland ecosystems. mSystems, 7, e01309-21. |
[31] | Peay KG, von Sperber C, Cardarelli E, Toju H, Francis CA, Chadwick OA, Vitousek PM (2017) Convergence and contrast in the community structure of bacteria, fungi and archaea along a tropical elevation-climate gradient. FEMS Microbiology Ecology, 93, fix045. |
[32] |
Ren CJ, Chen J, Lu XJ, Doughty R, Zhao FZ, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116, 4-10.
DOI URL |
[33] |
Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wüst PK, Bunk B, Huang SX, Regan KM, Berner D, Boeddinghaus RS, Marhan S, Prati D, Kandeler E, Overmann J, Friedrich MW (2020) Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Frontiers in Microbiology, 11, 1391.
DOI PMID |
[34] |
Shu DT, Guo YQ, Zhang BG, Zhang CF, van Nostrand JD, Lin YB, Zhou JZ, Wei GH (2021) Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China’s Loess Plateau. Science of the Total Environment, 774, 145737.
DOI URL |
[35] |
Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, Chrisler WB, Chu RK, Danczak RE, Fansler SJ, Kennedy DW, Resch CT, Tfaily M (2016) Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 7, 11237.
DOI PMID |
[36] |
Stegen JC, Lin XJ, Fredrickson JK, Chen XY, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069-2079.
DOI |
[37] |
Stegen JC, Lin XJ, Fredrickson JK, Konopka AE (2015) Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 6, 370.
DOI PMID |
[38] |
Steven B, Phillips ML, Belnap J, Gallegos-Graves LV, Kuske CR, Reed SC (2021) Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances. Frontiers in Microbiology, 12, 648455.
DOI URL |
[39] | Tao Y, Zhang YM (2013) Evaluation of vegetation biomass carbon storage in deserts of Central Asia. Arid Land Geography, 36, 615-622. (in Chinese with English abstract) |
[陶冶, 张元明 (2013) 中亚干旱荒漠区植被碳储量估算. 干旱区地理, 36, 615-622.] | |
[40] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[41] |
Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
DOI URL |
[42] | Wan WJ, Liu S, Li X, Xing YH, Chen WL, Huang QY (2021) Bridging rare and abundant bacteria with ecosystem multifunctionality in salinized agricultural soils: From community diversity to environmental adaptation. mSystems, 6, e01221-20. |
[43] | Wang YT, Tang LS (2009) Responses of different life-form plants in Garbantunggut Desert to small rainfall events. Chinese Journal of Ecology, 28, 1028-1034. (in Chinese with English abstract) |
[王亚婷, 唐立松 (2009) 古尔班通古特沙漠不同生活型植物对小雨量降雨的响应. 生态学杂志, 28, 1028-1034.] | |
[44] |
Xu MJ, Zhu XZ, Chen SP, Pang S, Liu W, Gao LL, Yang W, Li TT, Zhang YH, Luo C, He DD, Wang ZP, Fan Y, Han XG, Zhang XM (2022) Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 25, 103893.
DOI URL |
[45] |
Xu P, Rong XY, Liu CH, Du F, Yin BF, Tao Y, Zhang YM (2022) Effects of extreme drought on community and ecological network of soil fungi in a temperate desert. Biodiversity Science, 30, 21327. (in Chinese with English abstract)
DOI |
[徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明 (2022) 极端干旱对温带荒漠土壤真菌群落和生态网络的影响. 生物多样性, 30, 21327.]
DOI |
|
[46] |
Yang LY, Ning DL, Yang YF, He NP, Li XZ, Cornell CR, Bates CT, Filimonenko E, Kuzyakov Y, Zhou JZ, Yu GR, Tian J (2022) Precipitation balances deterministic and stochastic processes of bacterial community assembly in grassland soils. Soil Biology and Biochemistry, 168, 108635.
DOI URL |
[47] |
Yang Y, Li T, Wang YQ, Cheng H, Chang SX, Liang C, An SS (2021) Negative effects of multiple global change factors on soil microbial diversity. Soil Biology and Biochemistry, 156, 108229.
DOI URL |
[48] |
Yao MJ, Rui JP, Niu HS, Heděnec P, Li JB, He ZL, Wang JM, Cao WD, Li XZ (2017) The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. CATENA, 152, 47-56.
DOI URL |
[49] |
Zhang R, Liu T (2012) Plant species diversity and community classification in the southern Gurbantunggut Desert. Acta Ecologica Sinica, 32, 6056-6066. (in Chinese with English abstract)
DOI URL |
[张荣, 刘彤 (2012) 古尔班通古特沙漠南部植物多样性及群落分类. 生态学报, 32, 6056-6066.] | |
[50] |
Zhou ST, Xue K, Zhang B, Tang L, Pang Z, Wang F, Che RX, Ran QW, Xia AQ, Wang K, Li LF, Dong JF, Du JQ, Hu RH, Hao YB, Cui XY, Wang YF (2021) Spatial patterns of microbial nitrogen-cycling gene abundances along a precipitation gradient in various temperate grasslands at a regional scale. Geoderma, 404, 115236.
DOI URL |
[1] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[2] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[3] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[4] | 王健铭, 雷训, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 中国温带荒漠植物群落生态特异性格局及其影响因素[J]. 生物多样性, 2023, 31(10): 23144-. |
[5] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[6] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[7] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[8] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[9] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[10] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[11] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[12] | 董雷, 王静, 刘永刚, 赵志平, 米湘成, 郭柯. 太行山北段地区荆条灌丛和三裂绣线菊灌丛群落谱系结构[J]. 生物多样性, 2021, 29(1): 21-31. |
[13] | 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629. |
[14] | 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41. |
[15] | 宋云峰, 陈声文, 王薇, 余建平, 钱海源, 王云泉, 陈磊, 米湘成, 任海保, 叶铎, 陈建华, 马克平. 负密度制约和生境过滤对古田山幼苗功能多样性年际变化的影响[J]. 生物多样性, 2017, 25(9): 959-965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn