生物多样性 ›› 2019, Vol. 27 ›› Issue (6): 619-629. DOI: 10.17520/biods.2019107
桂旭君1,2,3,练琚愉1,2,*(),张入匀1,2,3,李艳朋1,2,3,沈浩1,2,倪云龙1,2,3,叶万辉1,2
收稿日期:
2019-03-28
接受日期:
2019-05-28
出版日期:
2019-06-20
发布日期:
2019-07-08
通讯作者:
练琚愉
基金资助:
Gui Xujun1,2,3,Lian Juyu1,2,*(),Zhang Ruyun1,2,3,Li Yanpeng1,2,3,Shen Hao1,2,Ni Yunlong1,2,3,Ye Wanhui1,2
Received:
2019-03-28
Accepted:
2019-05-28
Online:
2019-06-20
Published:
2019-07-08
Contact:
Lian Juyu
摘要:
群落结构在森林生态系统中具有重要作用, 其构建机制一直是森林生态学的研究核心。群落结构不仅包括水平方向上的物种分布格局, 还包括垂直方向上的物种分层结构。本文基于鼎湖山南亚热带常绿阔叶林塔吊样地, 利用林冠塔吊和测高杆精准测量样地内每个个体(胸径大于1 cm)的树高, 并划分群落的垂直层次, 研究了每层的群落多样性特征(α多样性)和林层间的群落多样性变化特征(β多样性)。结果表明: (1)样地群落垂直层次由下至上分为5层: 灌木层、亚冠层、林冠下层、林冠中层和林冠上层。(2)随林层向上, 物种丰富度、多度和Shannon-Wiener指数均下降, Pielou均匀度指数在林冠下层最大。(3)利用POD法计算并分解β多样性, 发现随林层向上, β多样性在灌木层与其他各层间呈递增趋势, 在相邻林层间呈单峰型, 不同林层间的物种组成差异主要由丰富度差异造成。 但在林冠下层与林冠中层间丰富度差异较小, 物种替换组分增大, 可能与林冠下层所处特殊位置有关。(4)各林层内微环境从灌木层向上, 趋于高温、强光照和低空气相对湿度, 但林冠下层平均日光强最低。综上, 鼎湖山南亚热带常绿阔叶林林冠下层可能存在强烈的环境筛选作用, 且光照可能是影响群落垂直结构形成的限制因子。
桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉 (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27, 619-629. DOI: 10.17520/biods.2019107.
Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui (2019) Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China. Biodiversity Science, 27, 619-629. DOI: 10.17520/biods.2019107.
图1 最优分类组数判断指标。(a)不同分类情况下的各对象归属和各分类组数对应的ssi (simple structure index)值, 其中左边的图表示每个对象在不同分类情况下的归属, 一种颜色代表一个分类组; 右图展示了不同分类组数对应的ssi值大小。(b)不同分类组数时分成的各类的组内平方和。
Fig. 1 The judgment index partitioning optimal groups. (a) Attribution of the objects and the corresponding ssi (simple structure index) values for different number of groups. The panel on the left shows the groups that each object is categorized with different conditions and different groups were distinguished by different colors; the panel on the right shows the value of ssi for different number of groups. (b) Value of sum of squares within groups for different number of groups.
最低树高 Minimum height (m) | 最高树高 Maximum height (m) | 多度 Abundance | 物种丰富度 Species richness | 优势种例举(多度, 最大胸径) Dominant species (abundance, maximum DBH) | ||
---|---|---|---|---|---|---|
灌木层 Shrub | 1.4 | 3.9 | 1,966 | 89 | 银柴 Aporosa dioica (207, 7.3) | 黄果厚壳桂 Cryptocarya concinna (251, 4.5) |
亚冠层 Sub-canopy | 4.0 | 6.7 | 1,173 | 75 | 鸭脚木 Schefflera octophylla (161, 16.0) | 银柴 Aporosa dioica (122, 10.1) |
林冠下层 Lower canopy | 6.8 | 11.2 | 503 | 56 | 荷木 Schima superba (54, 39.4) | 鸭脚木 Schefflera octophylla (51, 18.8) |
林冠中层 Middle canopy | 11.3 | 17.2 | 271 | 27 | 荷木 Schima superba (101, 41.9) | 锥栗 Castanopsis chinensis (31, 41.0) |
林冠上层 Upper canopy | 17.4 | 27.1 | 226 | 17 | 荷木 Schima superba (111, 66.0) | 马尾松 Pinus massoniana (34, 47.1) |
总体 Total | - | - | 4,140 | 121 | 荷木 Schima superba (301,49.0) | 马尾松 Pinus massoniana (66, 47.1) |
表1 鼎湖山塔吊样地垂直各层概况
Table 1 Species abundance and richness of each vertical layer in the crane plot of Dinghushan
最低树高 Minimum height (m) | 最高树高 Maximum height (m) | 多度 Abundance | 物种丰富度 Species richness | 优势种例举(多度, 最大胸径) Dominant species (abundance, maximum DBH) | ||
---|---|---|---|---|---|---|
灌木层 Shrub | 1.4 | 3.9 | 1,966 | 89 | 银柴 Aporosa dioica (207, 7.3) | 黄果厚壳桂 Cryptocarya concinna (251, 4.5) |
亚冠层 Sub-canopy | 4.0 | 6.7 | 1,173 | 75 | 鸭脚木 Schefflera octophylla (161, 16.0) | 银柴 Aporosa dioica (122, 10.1) |
林冠下层 Lower canopy | 6.8 | 11.2 | 503 | 56 | 荷木 Schima superba (54, 39.4) | 鸭脚木 Schefflera octophylla (51, 18.8) |
林冠中层 Middle canopy | 11.3 | 17.2 | 271 | 27 | 荷木 Schima superba (101, 41.9) | 锥栗 Castanopsis chinensis (31, 41.0) |
林冠上层 Upper canopy | 17.4 | 27.1 | 226 | 17 | 荷木 Schima superba (111, 66.0) | 马尾松 Pinus massoniana (34, 47.1) |
总体 Total | - | - | 4,140 | 121 | 荷木 Schima superba (301,49.0) | 马尾松 Pinus massoniana (66, 47.1) |
共有种总数量 Generalist (%) | 特有种总数量 Specialist (%) | 太少未能分类 Too rare to clarify (%) | 总计 Total | |
---|---|---|---|---|
灌木层和亚冠层 Shrub vs sub-canopy | 24 (23.08) | 4 (3.98) | 76 (73.08) | 104 |
灌木层和林冠下层 Shrub vs lower canopy | 17 (16.50) | 7 (6.79) | 79 (76.70) | 103 |
灌木层和林冠中层 Shrub vs middle canopy | 8 (8.42) | 11 (11.58) | 76 (80.00) | 95 |
灌木层和林冠上层 Shrub vs upper canopy | 1 (1.06) | 14 (14.89) | 79 (84.08) | 94 |
亚冠层和林冠下层 Sub-canopy vs lower canopy | 19 (20.43) | 3 (3.23) | 71 (76.34) | 93 |
林冠下层和林冠中层 Lower canopy vs middle canopy | 10 (17.24) | 4 (6.89) | 44 (75.86) | 58 |
林冠中层和林冠上层 Middle canopy vs upper canopy | 5 (21.80) | 4 (3.13) | 23 (75.00) | 32 |
表2 鼎湖山塔吊样地灌木层与其他各林层及相邻林层间物种组成比较
Table 2 Comparison of species component between shrub and other layers as well as among neighbouring layers in pair in the crane plot of Dinghushan
共有种总数量 Generalist (%) | 特有种总数量 Specialist (%) | 太少未能分类 Too rare to clarify (%) | 总计 Total | |
---|---|---|---|---|
灌木层和亚冠层 Shrub vs sub-canopy | 24 (23.08) | 4 (3.98) | 76 (73.08) | 104 |
灌木层和林冠下层 Shrub vs lower canopy | 17 (16.50) | 7 (6.79) | 79 (76.70) | 103 |
灌木层和林冠中层 Shrub vs middle canopy | 8 (8.42) | 11 (11.58) | 76 (80.00) | 95 |
灌木层和林冠上层 Shrub vs upper canopy | 1 (1.06) | 14 (14.89) | 79 (84.08) | 94 |
亚冠层和林冠下层 Sub-canopy vs lower canopy | 19 (20.43) | 3 (3.23) | 71 (76.34) | 93 |
林冠下层和林冠中层 Lower canopy vs middle canopy | 10 (17.24) | 4 (6.89) | 44 (75.86) | 58 |
林冠中层和林冠上层 Middle canopy vs upper canopy | 5 (21.80) | 4 (3.13) | 23 (75.00) | 32 |
林层 Layers | Shannon-Wiener指数 Shannon-Wiener index | Peliou均匀度指数 Peliou evenness index |
---|---|---|
灌木层 Shrub | 2.556 ± 0.335a | 0.910 ± 0.040a |
亚冠层 Sub-canopy | 2.300 ± 0.529b | 0.917 ± 0.033ab |
林冠下层 Lower canopy | 1.955 ± 0.334c | 0.940 ± 0.027ab |
林冠中层 Middle canopy | 1.440 ± 0.497d | 0.925 ± 0.232ab |
林冠上层 Upper canopy | 1.172 ± 0.519e | 0.896 ± 0.275b |
表3 鼎湖山塔吊样地各林层的α多样性
Table 3 Species α diversity of each layer in the crane plot of Dinghushan
林层 Layers | Shannon-Wiener指数 Shannon-Wiener index | Peliou均匀度指数 Peliou evenness index |
---|---|---|
灌木层 Shrub | 2.556 ± 0.335a | 0.910 ± 0.040a |
亚冠层 Sub-canopy | 2.300 ± 0.529b | 0.917 ± 0.033ab |
林冠下层 Lower canopy | 1.955 ± 0.334c | 0.940 ± 0.027ab |
林冠中层 Middle canopy | 1.440 ± 0.497d | 0.925 ± 0.232ab |
林冠上层 Upper canopy | 1.172 ± 0.519e | 0.896 ± 0.275b |
图2 鼎湖山塔吊样地各林层基于物种多度数据的β多样性大小(S?rensen相异性指数)与分解结果。(a)以灌木层为参照, 沿林层向上灌木层与其他各林层间β多样性大小和分解组分大小。(b)相邻两林层间的β多样性大小和分解组分大小。S: 灌木层; SC: 亚冠层; LC: 林冠下层; MC: 林冠中层; UC: 林冠上层。
Fig. 2 Results of β diversity (S?rensen dissimilarity) and their partitions based on species abundance data of each layers in the crane plot of Dinghushan. (a) Layers relative to the shrub layer. (b) Neighbouring layers. S, Shrub; SC, Sub-canopy; LC, Lower canopy; MC, Middle canopy; UC, Upper canopy.
[1] |
Angeler DG ( 2013) Revealing a conservation challenge through partitioned long-term beta diversity: Increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distributions, 19, 772-781.
DOI URL |
[2] |
Ashton PS, Hall P ( 1992) Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology, 80, 459-481.
DOI URL |
[3] |
Baselga A ( 2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
DOI URL |
[4] |
Baselga A, Orme CDL ( 2012) Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.
DOI URL |
[5] |
Baselga A ( 2013) Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4, 552-557.
DOI URL |
[6] |
Brown JH ( 2001) Mammals on mountainsides: Elevational patterns of diversity. Global Ecology and Biogeography, 10, 101-109.
DOI URL |
[7] |
Chazdon RL, Chao A, Colwell RK, Lin SY, Norden N, Letcher SG, Clark DB, Arroyo JP ( 2011) A novel statistical method for classifying habitat generalists and specialists. Ecology, 92, 1332-1343.
DOI URL |
[8] | Chen SB, Ouyang ZY, Xu WH, Xiao Y ( 2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract) |
[ 陈圣宾, 欧阳志云, 徐卫华, 肖燚 ( 2010) Beta多样性研究进展. 生物多样性, 18, 323-335.] | |
[9] | Condit R ( 1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin. |
[10] | Dolnicar S, Grabler K, Mazanec JA ( 1999) A tale of three cities: Perceptual charting for analyzing destination images. In: Consumer Psychology of Tourism, Hospitality and Leisure (eds Sakai MY, Woodside AG, Crouch GI, Mazanec JA, Oppermann M), pp. 39-62. CAB International, New York. |
[11] |
Fukami T ( 2015) Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution and Systematics, 46, 1-23.
DOI URL |
[12] | Gillespie TW, Brock J, Wright CW ( 2014) Prospects for quantifying structure, floristic composition and species richness of tropical forests. International Journal of Remote Sensing, 25, 707-715. |
[13] |
Grubb PJ, Lloyd JR, Pennington TD, Whitmore TC ( 1963) A comparison of montane and lowland rain forest in ecuador. I. The forest structure, physiognomy, and floristics. Journal of Ecology, 51, 567-601.
DOI URL |
[14] |
Hao ZQ, Zhang J, Song B, Ye J, Li B ( 2007) Vertical structure and spatial associations of dominant tree species in an old- growth temperate forest. Forest Ecology and Management, 252, 1-11.
DOI URL |
[15] |
Harms KE, Condit R, Hubbell SP, Foster RB ( 2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
DOI URL |
[16] |
Harrison S, Ross SJ, Lawton JH ( 1992) Beta diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
DOI URL |
[17] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM ( 2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248. |
[18] | Huang ZL, Kong GH, Wei P ( 1998) Plant species diversity dynamics in Dinghu Mountain forests. Chinese Biodiversity, 6, 116-121. (in Chinese with English abstract) |
[ 黄忠良, 孔国辉, 魏平 ( 1998) 鼎湖山植物物种多样性动态. 生物多样性, 6, 116-121.] | |
[19] |
Latham PA, Zuuring HR, Coble DW ( 1998) A method for quantifying vertical forest structure. Forest Ecology and Management, 104, 157-170.
DOI URL |
[20] |
Legendre P ( 2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.
DOI URL |
[21] |
Legendre P, De Cáceres M ( 2013) Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.
DOI URL |
[22] |
Lennon JJ, Koleff P, Greenwood J, Gaston KJ ( 2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
DOI URL |
[23] | Li DZ, Zang RG ( 2004) The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes. World Forestry Research, 17(3), 12-16. (in Chinese with English abstract) |
[ 李德志, 臧润国 ( 2004) 森林冠层结构与功能及其时空变化研究进展. 世界林业研究, 17(3), 12-16.] | |
[24] |
Li SP, Cadotte MW, Meiners SJ, Pu Z, Fukami T, Jiang L ( 2016) Convergence and divergence in a long-term old-field succession: The importance of spatial scale and species abundance. Ecology Letters, 19, 1101-1109.
DOI URL |
[25] | Lowman MD, Rinker HB ( 2004) Forest Canopies, 2nd edn. Elsevier Academic Press, San Diego. |
[26] |
Lowman MD, Wittman PK ( 1996) Forest canopies: Methods, hypotheses, and future directions. Annual Review of Ecology and Systematics, 27, 55-81.
DOI URL |
[27] | Ma KP, Liu YM ( 1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese) |
[ 马克平, 刘玉明 ( 1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[28] |
McCain CM, Beck J ( 2016) Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography, 25, 299-310.
DOI URL |
[29] | Neto RB ( 1989) Rain-forest canopy remains elusive. Nature, 340, 586. |
[30] |
Perry DR ( 1978) A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.
DOI URL |
[31] | Pielou EC ( 1975) Ecological Diversity. Wiley, New York. |
[32] |
Podani J, Schmera D ( 2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
DOI URL |
[33] | Rahbek C ( 2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239. |
[34] |
Ricklefs RE ( 1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167-171.
DOI URL |
[35] | Rosenzweig ML ( 1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. |
[36] | Shen H, Cai JN, Li MJ, Chen Q, Ye WH, Wang ZF, Lian JY, Song L ( 2017) On Chinese forest canopy biodiversity monitoring. Biodiversity Science, 25, 229-236. (in Chinese with English abstract) |
[ 沈浩, 蔡佳宁, 李萌姣, 陈青, 叶万辉, 王峥峰, 练琚愉, 宋亮 ( 2017) 中国森林冠层生物多样性监测. 生物多样性, 25, 229-236.] | |
[37] |
Si XF, Baselga A, Leprieur F, Song X, Ding P ( 2016) Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology, 85, 409-418.
DOI URL |
[38] | Si XF, Zhao YH, Chen CW, Ren P, Zeng Y, Wu LB, Ding P ( 2017) Beta-diversity partitioning: Methods, applications and perspectives. Biodiversity Science, 25, 464-480. (in Chinese with English abstract) |
[ 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 ( 2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25, 464-480.] | |
[39] |
Smith AP ( 1973) Stratification of temperate and tropical forests. The American Naturalist, 107, 671-683.
DOI URL |
[40] | Sun RY, Li QF, Niu CJ, Lou AR ( 2007) Foundations in Ecology, 2nd edn. Higher Education Press, Beijing. (in Chinese) |
[ 孙儒泳, 李庆芬, 牛翠娟, 娄安如 ( 2007) 基础生态学(第二版). 高等教育出版社, 北京.] | |
[41] |
Ulrich W, Almeida-Neto M, Gotelli NJ ( 2009) A consumer’s guide to nestedness analysis. Oikos, 118, 3-17.
DOI URL |
[42] |
Watt AS ( 1924) On the ecology of British beechwoods with special reference to their regeneration. Part II. The development and structure of beech communities on the Sussex Downs. Journal of Ecology, 12, 145-204.
DOI URL |
[43] |
Whittaker RH ( 1972) Evolution and measurement of species diversity. Taxon, 21, 213-215.
DOI URL |
[44] |
Williams PH ( 1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society of London B: Biological Sciences, 263, 579-588.
DOI URL |
[45] | Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM ( 2016) Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522. (in Chinese with English abstract) |
[ 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 ( 2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.] | |
[46] | Yang L, Sun ZY, Tang GL, Lin ZW, Chen YQ, Li Y, Li Y ( 2016) Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing. Tropical Geography, 36, 833-839. (in Chinese with English abstract) |
[ 杨龙, 孙中宇, 唐光良, 林志文, 陈燕乔, 黎喻, 李勇 ( 2016) 基于微型无人机遥感的亚热带林冠物种识别. 热带地理, 36, 833-839.] | |
[47] | Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM ( 2008) Community structure of a 20 hm 2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China . Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract) |
[ 叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 ( 2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.] | |
[48] | Zhao J, Li J, Liu QH ( 2013) Review of forest vertical structure parameter inversion based on remote sensing technology. Journal of Remote Sensing, 17, 697-716. (in Chinese with English abstract) |
[ 赵静, 李静, 柳钦火 ( 2013) 森林垂直结构参数遥感反演综述. 遥感学报, 17, 697-716.] | |
[49] | Zhao MF, Xing KX, Wang YH ( 2017) Patterns and determinants of beta diversity in the understory vegetation layers of montane boreal conifer forest in Luya Mountain. Acta Ecologica Sinica, 37, 3327-3334. (in Chinese with English abstract) |
[ 赵鸣飞, 邢开雄, 王宇航 ( 2017) 芦芽山寒温性针叶林冠层下植被beta多样性格局及其成因. 生态学报, 37, 3327-3334.] | |
[50] | Zhao ZM, Guo YQ ( 1993) Principles and Methods of Community Ecology. Scientific and Technical Documents Publishing House, Chongqing. (in Chinese) |
[ 赵志模, 郭依泉 ( 1993) 群落生态学原理与方法. 科技文献出版社重庆分社, 重庆.] | |
[51] | Zhuang CY, Huang QL, Ma ZB, Luo F, Zhang Y ( 2014) Review on defining methods for canopy stratification. World Forestry Research, 27(6), 34-40. (in Chinese with English abstract) |
[ 庄崇洋, 黄清麟, 马志波, 罗芬, 张寅 ( 2014) 林层划分方法综述. 世界林业研究, 27(6), 34-40.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[10] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[11] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[12] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[13] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[14] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[15] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn