生物多样性 ›› 2022, Vol. 30 ›› Issue (10): 22410. DOI: 10.17520/biods.2022410
所属专题: 物种形成与系统进化
• 综述 • 下一篇
王少鹏1,*(), 罗明宇1, 冯彦皓2, 储诚进3, 张大勇4
收稿日期:
2022-07-19
接受日期:
2022-09-26
出版日期:
2022-10-20
发布日期:
2022-10-11
通讯作者:
王少鹏
作者简介:
* E-mail: shaopeng.wang@pku.edu.cn基金资助:
Shaopeng Wang1,*(), Mingyu Luo1, Yanhao Feng2, Chengjin Chu3, Dayong Zhang4
Received:
2022-07-19
Accepted:
2022-09-26
Online:
2022-10-20
Published:
2022-10-11
Contact:
Shaopeng Wang
摘要:
生物多样性是生态系统复杂性的重要特征, 理解多样性的形成和维持机制一直是理论生态学研究的核心议题。本文从三方面概述了生物多样性理论的最新进展。一是物种共存和群落构建, 总结了现代共存理论和基于过程的群落构建理论的新进展。二是物种相互作用, 综述了利用经验数据推断物种相互作用关系和强度的最新方法。三是生态-进化动态, 介绍了生态-进化模型的一般框架及其在生物多样性研究中的应用。最后对生物多样性理论的发展趋势做了展望, 特别是多尺度整合理论和全球变化下的预测理论。
王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇 (2022) 生物多样性理论最新进展. 生物多样性, 30, 22410. DOI: 10.17520/biods.2022410.
Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang (2022) Theoretical advances in biodiversity research. Biodiversity Science, 30, 22410. DOI: 10.17520/biods.2022410.
[1] |
Abrams PA (2000) The evolution of predator-prey interactions: Theory and evidence. Annual Review of Ecology and Systematics, 31, 79-105.
DOI URL |
[2] |
Allhoff KT, Drossel B (2016) Biodiversity and ecosystem functioning in evolving food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150281.
DOI URL |
[3] |
Angulo MT, Moreno JA, Lippner G, Barabási AL, Liu YY (2017) Fundamental limitations of network reconstruction from temporal data. Journal of the Royal Society, Interface, 14, 20160966.
DOI URL |
[4] |
Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: A new comparative index. Ecology, 85, 2682-2686.
DOI URL |
[5] |
Barabás G, D’Andrea R, Stump SM (2018) Chesson's coexistence theory. Ecological Monographs, 88, 277-303.
DOI URL |
[6] |
Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, Liu YY (2016) Universality of human microbial dynamics. Nature, 534, 259-262.
DOI URL |
[7] |
Borrelli JJ, Allesina S, Amarasekare P, Arditi R, Chase I, Damuth J, Holt RD, Logofet DO, Novak M, Rohr RP, Rossberg AG, Spencer M, Tran JK, Ginzburg LR (2015) Selection on stability across ecological scales. Trends in Ecology & Evolution, 30, 417-425.
DOI URL |
[8] |
Branco P, Egas M, Elser JJ, Huisman J (2018) Eco-evolutionary dynamics of ecological stoichiometry in plankton communities. The American Naturalist, 192, E1-E20.
DOI URL |
[9] |
Branco P, Egas M, Hall SR, Huisman J (2020) Why do phytoplankton evolve large size in response to grazing? The American Naturalist, 195, E20-E37.
DOI URL |
[10] |
Carrara F, Giometto A, Seymour M, Rinaldo A, Altermatt F (2015) Inferring species interactions in ecological communities: A comparison of methods at different levels of complexity. Methods in Ecology and Evolution, 6, 895-906.
DOI URL |
[11] |
Carroll IT, Cardinale BJ, Nisbet RM (2011) Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology, 92, 1157-1165.
PMID |
[12] |
Cenci S, Sugihara G, Saavedra S (2019) Regularized S-map for inference and forecasting with noisy ecological time series. Methods in Ecology and Evolution, 10, 650-660.
DOI URL |
[13] |
Chang CW, Miki T, Ushio M, Ke PJ, Lu HP, Shiah FK, Hsieh CH (2021) Reconstructing large interaction networks from empirical time series data. Ecology Letters, 24, 2763-2774.
DOI URL |
[14] |
Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25, 319-322.
DOI URL |
[15] | Chase JM, Jeliazkov A, Ladouceur E, Viana DS (2020) Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 1469, 86-104. |
[16] | Chase JM, Leibold MA (2003) Ecological Niches:Interspecific Interactions. The University of Chicago Press, Chicago. |
[17] |
Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[18] |
Chesson P (2003) Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theoretical Population Biology, 64, 345-357.
PMID |
[19] |
Chesson P (2018) Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 106, 1773-1794.
DOI URL |
[20] | Chesson P (2020) Species coexistence. In: Theoretical Ecology: Concepts and Applications (eds McCann KS, Geller G), pp. 5-27. Oxford University Press, Oxford. |
[21] |
Chesson P, Kuang JJ (2008) The interaction between predation and competition. Nature, 456, 235-238.
DOI URL |
[22] | Chisholm RA, Pacala SW (2010) Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences, USA, 107, 15821-15825. |
[23] | Chu CJ, Adler PB (2015) Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs, 85, 150123174739008. |
[24] |
Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract)
DOI |
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.]
DOI |
|
[25] |
Clark AT, Ann Turnbull L, Tredennick A, Allan E, Harpole WS, Mayfield MM, Soliveres S, Barry K, Eisenhauer N, Kroon H, Rosenbaum B, Wagg C, Weigelt A, Feng YH, Roscher C, Schmid B (2020) Predicting species abundances in a grassland biodiversity experiment: Trade-offs between model complexity and generality. Journal of Ecology, 108, 774-787.
DOI URL |
[26] |
Clark T, Ye H, Isbell F, Deyle ER, Cowles J, Tilman GD, Sugihara G (2015) Spatial convergent cross mapping to detect causal relationships from short time series. Ecology, 96, 1174-1181.
PMID |
[27] |
de Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC (2016) Evolving perspectives on monopolization and priority effects. Trends in Ecology & Evolution, 31, 136-146.
DOI URL |
[28] | de Wit CT (1960) On competition. Verslagen Landbouwkundige Onderzoekigen, 66, 1-82. |
[29] | Deyle ER, May RM, Munch SB, Sugihara G (2016) Tracking and forecasting ecosystem interactions in real time. Proceedings of the Royal Society B: Biological Sciences, 283, 20152258. |
[30] |
Deyle ER, Sugihara G (2011) Generalized theorems for nonlinear state space reconstruction. PLoS ONE, 6, e18295.
DOI URL |
[31] |
Diamond JM (1975) The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129-146.
DOI URL |
[32] |
Díaz-Sierra R, Verwijmeren M, Rietkerk M, Dios VR, Baudena M (2017) A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods in Ecology and Evolution, 8, 580-591.
DOI URL |
[33] |
Dieckmann U, Law R (1996) The dynamical theory of coevolution: A derivation from stochastic ecological processes. Journal of Mathematical Biology, 34, 579-612.
PMID |
[34] |
Dixon PA, Milicich MJ, Sugihara G (1999) Episodic fluctuations in larval supply. Science, 283, 1528-1530.
PMID |
[35] |
Ellner SP, Snyder RE, Adler PB (2016) How to quantify the temporal storage effect using simulations instead of math. Ecology Letters, 19, 1333-1342.
DOI PMID |
[36] |
Ellner SP, Snyder RE, Adler PB, Hooker G (2019) An expanded modern coexistence theory for empirical applications. Ecology Letters, 22, 3-18.
DOI PMID |
[37] | Ellner SP, Snyder RE, Adler PB, Hooker G (2022) Toward a “modern coexistence theory” for the discrete and spatial. Ecological Monographs, e1548. |
[38] | Endler JA (1986) Natural Selection in the Wild. Princeton University Press, Princeton. |
[39] |
Feng YH, Soliveres S, Allan E, Rosenbaum B, Wagg C, Tabi A, de Luca E, Eisenhauer N, Schmid B, Weigelt A, Weisser W, Roscher C, Fischer M (2020) Inferring competitive outcomes, ranks and intransitivity from empirical data: A comparison of different methods. Methods in Ecology and Evolution, 11, 117-128.
DOI URL |
[40] |
Freckleton RP, Watkinson AR (1999) The mis-measurement of plant competition. Functional Ecology, 13, 285-287.
DOI URL |
[41] |
Fukami T (2015) Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
DOI URL |
[42] |
Godoy O, Gómez-Aparicio L, Matías L, Pérez-Ramos IM, Allan E (2020) An excess of niche differences maximizes ecosystem functioning. Nature Communications, 11, 4180.
DOI PMID |
[43] | Godoy O, Stouffer DB, Kraft NJB, Levine JM (2017) Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology, 98, 1193-1200. |
[44] | Grainger TN, Letten AD, Gilbert B, Fukami T (2019) Applying modern coexistence theory to priority effects. Proceedings of the National Academy of Sciences, USA, 116, 6205-6210. |
[45] |
Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science, 313, 224-226.
DOI URL |
[46] |
Guzman LM, Germain RM, Forbes C, Straus S, O’Connor MI, Gravel D, Srivastava DS, Thompson PL (2019) Towards a multi-trophic extension of metacommunity ecology. Ecology Letters, 22, 19-33.
DOI PMID |
[47] |
Hallett LM, Shoemaker LG, White CT, Suding KN (2019) Rainfall variability maintains grass-forb species coexistence. Ecology Letters, 22, 1658-1667.
DOI PMID |
[48] |
Hart S, Freckleton R, Levine J (2018) How to quantify competitive ability. Journal of Ecology, 106, 1902-1909.
DOI URL |
[49] | Hart S, Turcotte M, Levine J (2019) Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences, USA, 116, 2112-2117. |
[50] | Hendry AP (2016) Eco-evolutionary Dynamics. Princeton University Press, Princeton. |
[51] |
HilleRisLambers J, Adler P, Harpole W, Levine J, Mayfield M (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
DOI URL |
[52] | Holyoak M, Leibold MA, Holt RD (2005) Metacommunities:Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago. |
[53] |
Huang ZL, Liu HL, Chu CJ, Li YZ (2022) Advances in intransitive competition between organisms. Biodiversity Science, 30, 21282. (in Chinese with English abstract)
DOI |
[黄正良, 刘翰伦, 储诚进, 李远智 (2022) 生物间非传递性竞争研究进展. 生物多样性, 30, 21282.]
DOI |
|
[54] | Hubbell SP (2001) A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[55] |
Ives AR, Dennis B, Cottingham KL, Carpenter SR (2003) Estimating community stability and ecological interactions from time-series data. Ecological Monographs, 73, 301-330.
DOI URL |
[56] | Johnson CA (2021) How mutualisms influence the coexistence of competing species. Ecology, 102, e03346. |
[57] |
Kandlikar GS, Johnson CA, Yan X, Kraft NJB, Levine JM (2019) Winning and losing with microbes: How microbially mediated fitness differences influence plant diversity. Ecology Letters, 22, 1178-1191.
DOI PMID |
[58] | Ke PJ, Letten AD (2018) Coexistence theory and the frequency-dependence of priority effects. Nature Ecology & Evolution, 2, 1691-1695. |
[59] | Ke PJ, Wan J (2020) Effects of soil microbes on plant competition: A perspective from modern coexistence theory. Ecological Monographs, 90, e01391. |
[60] | Kraft NJ, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Annals of Saudi Medicine, 112, 797-802. |
[61] |
Kremer CT, Klausmeier CA (2013) Coexistence in a variable environment: Eco-evolutionary perspectives. Journal of Theoretical Biology, 339, 14-25.
DOI PMID |
[62] |
Kremer CT, Klausmeier CA (2017) Species packing in eco-evolutionary models of seasonally fluctuating environments. Ecology Letters, 20, 1158-1168.
DOI PMID |
[63] |
Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science, 317, 1561-1563.
PMID |
[64] |
Leibold M, Holyoak M, Mouquet N, Amarasekare P, Chase J, Hoopes M, Holt R, Shurin J, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601-613.
DOI URL |
[65] | Leibold MA, Chase JM (2018) Metacommunity Ecology. Princeton University Press, Princeton. |
[66] | Letten AD, Dhami MK, Ke PJ, Fukami T (2018) Species coexistence through simultaneous fluctuation-dependent mechanisms. Proceedings of the National Academy of Sciences, USA, 115, 6745-6750. |
[67] |
Letten AD, Ke PJ, Fukami T (2016) Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177.
DOI URL |
[68] |
Levin SA (1992) The problem of pattern and scale in ecology: The Robert H. MacArthur award lecture. Ecology, 73, 1943-1967.
DOI URL |
[69] |
Levin SA (2005) Self-organization and the emergence of complexity in ecological systems. BioScience, 55, 1075-1079.
DOI URL |
[70] |
Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature, 461, 254-257.
DOI URL |
[71] |
Li SP, Tan JQ, Yang X, Ma C, Jiang L (2019) Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. The ISME Journal, 13, 402-412.
DOI URL |
[72] |
Li YZ, Xiao JL, Liu HL, Wang YS, Chu CJ (2020) Advances in higher-order interactions between organisms. Biodiversity Science, 28, 1333-1344. (in Chinese with English abstract)
DOI URL |
[李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进 (2020) 生物间高阶相互作用研究进展. 生物多样性, 28, 1333-1344.] | |
[73] |
Li ZY, Ye XZ, Wang SP (2021) Ecosystem stability and its relationship with biodiversity. Chinese Journal of Plant Ecology, 45, 1127-1139. (in Chinese with English abstract)
DOI URL |
[李周园, 叶小洲, 王少鹏 (2021) 生态系统稳定性及其与生物多样性的关系. 植物生态学报, 45, 1127-1139.]
DOI |
|
[74] |
Loeuille N, Loreau M (2006) Evolution of body size in food webs: Does the energetic equivalence rule hold? Ecology Letters, 9, 171-178.
PMID |
[75] |
Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: A review and comparison with theory. Trends in Ecology & Evolution, 26, 482-491.
DOI URL |
[76] |
Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. The American Naturalist, 154, 427-440.
DOI PMID |
[77] |
Loreau M, Sapijanskas J, Isbell F, Hector A (2012) Niche and fitness differences relate the maintenance of diversity to ecosystem function: Comment. Ecology, 93, 1482-1487.
PMID |
[78] | Luo MY, Wang SP, Saavedra S, Ebert D, Altermatt F (2022) Multispecies coexistence in fragmented landscapes. Proceedings of the National Academy of Sciences, USA, 119, e2201503119. |
[79] |
Lyu SM, Alexander JM (2022) Competition contributes to both warm and cool range edges. Nature Communications, 13, 2502.
DOI PMID |
[80] |
Maliet O, Loeuille N, Morlon H (2020) An individual‐based model for the eco-evolutionary emergence of bipartite interaction networks. Ecology Letters, 23, 1623-1634.
DOI URL |
[81] | Martin BT, Munch SB, Hein AM (2018) Reverse-engineering ecological theory from data. Proceedings of the Royal Society B: Biological Sciences, 285, 20180422. |
[82] |
May RM (1972) Will a large complex system be stable? Nature, 238, 413-414.
DOI URL |
[83] | Maynard DS, Bradford MA, Lindner DL, Frey SD, Glaeser JA, Crowther TW (2017) Diversity begets diversity in competition for space. Nature Ecology & Evolution, 1, 156. |
[84] |
Maynard DS, Wootton JT, Serván CA, Allesina S (2019) Reconciling empirical interactions and species coexistence. Ecology Letters, 22, 1028-1037.
DOI PMID |
[85] |
Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends in Ecology & Evolution, 30, 241-247.
DOI URL |
[86] |
Munch SB, Brias A, Sugihara G, Rogers TL (2019) Frequently asked questions about nonlinear dynamics and empirical dynamic modelling. ICES Journal of Marine Science, 77, 1463-1479.
DOI URL |
[87] |
Narwani A, Alexandrou MA, Oakley TH, Carroll IT, Cardinale BJ (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 16, 1373-1381.
DOI PMID |
[88] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[89] |
Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N (2012) Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change, 2, 747-751.
DOI URL |
[90] | Ovaskainen O, Tikhonov G, Dunson D, Grøtan V, Engen S, Sæther BE, Abrego N (2017) How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proceedings of the Royal Society B: Biological Sciences, 284, 20170768. |
[91] | Pastore AI, Barabás G, Bimler MD, Mayfield MM, Miller TE (2021) The evolution of niche overlap and competitive differences. Nature Ecology & Evolution, 5, 330-337. |
[92] |
Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 10, 2555.
DOI PMID |
[93] |
Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA, Gillespie R, Graham CH, Hagen O, Hartig F, Huang S, Jansson R, Maliet O, Münkemüller T, Pellissier L, Rangel TF, Storch D, Wiegand T, Hurlbert AH (2019) The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary models. Trends in Ecology & Evolution, 34, 211-223.
DOI URL |
[94] |
Pu ZC, Jiang L (2015) Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos, 124, 1327-1336.
DOI URL |
[95] |
Ricklefs RE (2008) Disintegration of the ecological community: American Society of Naturalists Sewall Wright award winner address. The American Naturalist, 172, 741-750.
DOI PMID |
[96] |
Ricklefs RE (2015) Intrinsic dynamics of the regional community. Ecology Letters, 18, 497-503.
DOI PMID |
[97] |
Rosenbaum B, Raatz M, Weithoff G, Fussmann GF, Gaedke U (2019) Estimating parameters from multiple time series of population dynamics using Bayesian inference. Frontiers in Ecology and Evolution, 6, 234.
DOI URL |
[98] |
Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top‐down mechanism for body‐mass-abundance scaling. Ecology, 89, 567-580.
PMID |
[99] |
Saavedra S, Rohr RP, Bascompte J, Godoy Ó, Kraft NJB, Levine J (2017) A structural approach for understanding multispecies coexistence. Ecological Monographs, 87, 470-486.
DOI URL |
[100] |
Sauer T, Yorke JA, Casdagli M (1991) Embedology. Journal of Statistical Physics, 65, 579-616.
DOI URL |
[101] |
Sauterey B, Ward B, Rault J, Bowler C, Claessen D (2017) The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography. The American Naturalist, 190, 116-130.
DOI PMID |
[102] | Schreiber SJ, Yamamichi M, Strauss SY (2019) When rarity has costs: Coexistence under positive frequency-dependence and environmental stochasticity. Ecology, 100, e02664. |
[103] |
Shoemaker LG, Barner AK, Bittleston LS, Teufel AI (2020) Quantifying the relative importance of variation in predation and the environment for species coexistence. Ecology Letters, 23, 939-950.
DOI PMID |
[104] |
Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters, 12, 1261-1276.
DOI PMID |
[105] |
Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, Bowker MA, Prati D, Delgado-Baquerizo M, Quero JL, Schöning I, Gallardo A, Weisser W, Müller J, Socher SA, García-Gómez M, Ochoa V, Schulze ED, Fischer M, Allan E (2015) Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 18, 790-798.
DOI PMID |
[106] |
Song CL (2020) Structural stability: Concepts, methods, and applications. Biodiversity Science, 28, 1345-1361. (in Chinese with English abstract)
DOI URL |
[宋础良 (2020) 结构稳定性: 概念、方法和应用. 生物多样性, 28, 1345-1361.] | |
[107] |
Song CL, Barabás G, Saavedra S (2019) On the consequences of the interdependence of stabilizing and equalizing mechanisms. The American Naturalist, 194, 627-639.
DOI PMID |
[108] |
Song CL, Simmons BI, Fortin MJ, Gonzalez A, Saavedra S (2022) Rapid monitoring for ecological persistence. bioRxiv, doi:10.1101/2022.07.02.498308.
DOI |
[109] |
Spaak JW, de Laender F (2020) Intuitive and broadly applicable definitions of niche and fitness differences. Ecology Letters, 23, 1117-1128.
DOI PMID |
[110] |
Spaak JW, Oscar G, Frederik DL (2021) Mapping species niche and fitness differences for communities with multiple interaction types. Oikos, 130, 2065-2077.
DOI URL |
[111] |
Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747-754.
DOI URL |
[112] |
Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science, 338, 496-500.
DOI PMID |
[113] | Takens F (1981) Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980 (eds Rand D, Young LS), pp. 366-381. Springer, Berlin, Heidelberg. |
[114] |
Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R, Vanschoenwinkel B, Viana DS, Chase JM (2020) A process‐based metacommunity framework linking local and regional scale community ecology. Ecology Letters, 23, 1314-1329.
DOI PMID |
[115] |
Thuiller W, Münkemüller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecology Letters, 16, 94-105.
DOI URL |
[116] | Tilman D, Kareiva PM (1997) Spatial Ecology:The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton. |
[117] |
Tredennick AT, Hooten MB, Adler PB (2017) Do we need demographic data to forecast plant population dynamics? Methods in Ecology and Evolution, 8, 541-551.
DOI URL |
[118] |
Ulrich W, Soliveres S, Kryszewski W, Maestre FT, Gotelli NJ (2014) Matrix models for quantifying competitive intransitivity. Oikos, 123, 1057-1070.
PMID |
[119] |
Ulrich W, Zaplata MK, Winter S, Schaaf W, Fischer A, Soliveres S, Gotelli NJ (2016) Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession. Oikos, 125, 698-707.
DOI URL |
[120] | Urban MC, de Meester L (2009) Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity. Proceedings of the Royal Society B: Biological Sciences, 276, 4129-4138. |
[121] |
Urban MC, Leibold MA, Amarasekare P, de Meester L, Gomulkiewicz R, Hochberg ME, Klausmeier CA, Loeuille N, de Mazancourt C, Norberg J, Pantel JH, Strauss SY, Vellend M, Wade MJ (2008) The evolutionary ecology of metacommunities. Trends in Ecology & Evolution, 23, 311-317.
DOI URL |
[122] |
Ushio M, Hsieh CH, Masuda R, Deyle ER, Ye H, Chang CW, Sugihara G, Kondoh M (2018) Fluctuating interaction network and time-varying stability of a natural fish community. Nature, 554, 360-363.
DOI URL |
[123] |
Vasseur DA, Amarasekare P, Rudolf VH, Levine JM (2011) Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. The American Naturalist, 178, E96-E109.
DOI URL |
[124] |
Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
DOI URL |
[125] | Vellend M (2016) The Theory of Ecological Communities (MPB-57). Princeton University Press, Princeton. |
[126] | Vellend M (translated by Zhang J, Zhang ZC, Wang YZ, Liu XY, Song HJ, Gao ZW, Wang X, Zhang R) (2021) The Theory of Ecological Communities (MPB-57). Higher Education Press, Beijing. (in Chinese) |
[张健, 张昭臣, 王宇卓, 刘翔宇, 宋厚娟, 高志文, 王昕, 张然 (译) (2021) 生态群落理论. 高等教育出版社, 北京.] | |
[127] | Wang SP, Brose U, van Nouhuys S, Holt RD, Loreau M (2021) Metapopulation capacity determines food chain length in fragmented landscapes. Proceedings of the National Academy of Sciences, USA, 118, e2102733118. |
[128] |
Weigelt A, Jolliffe P (2003) Indices of plant competition. Journal of Ecology, 91, 707-720.
DOI URL |
[129] |
Weiss-Lehman CP, Werner CM, Bowler CH, Hallett LM, Mayfield MM, Godoy O, Aoyama L, Barabás G, Chu C, Ladouceur E, Larios L, Shoemaker LG (2022) Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach. Ecology Letters, 25, 1263-1276.
DOI PMID |
[130] | Yan XY, Levine JM, Kandlikar GS (2022) A quantitative synthesis of soil microbial effects on plant species coexistence. Proceedings of the National Academy of Sciences, USA, 119, e2122088119. |
[131] |
Yang X, Gómez-Aparicio L, Lortie CJ, Verdú M, Cavieres LA, Huang Z, Gao R, Liu R, Zhao Y, Cornelissen JHC (2022) Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecology Letters, 25, 1580-1593.
DOI URL |
[132] |
Ye H, Sugihara G (2016) Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science, 353, 922-925.
DOI PMID |
[133] | Yonatan Y, Amit G, Friedman J, Bashan A (2022) Complexity-stability trade-off in empirical microbial ecosystems. Nature Ecology & Evolution, 6, 693-700. |
[134] |
Yu WB, Li SP (2020) Modern coexistence theory as a framework for invasion ecology. Biodiversity Science, 28, 1362-1375. (in Chinese with English abstract)
DOI URL |
[于文波, 黎绍鹏 (2020) 基于现代物种共存理论的入侵生态学概念框架. 生物多样性, 28, 1362-1375.] | |
[135] |
Zhang DY, Wang SP (2020) Theoretical ecology in the 21st century. Biodiversity Science, 28, 1301-1303. (in Chinese)
DOI |
[张大勇, 王少鹏 (2020) 二十一世纪的理论生态学. 生物多样性, 28, 1301-1303.]
DOI |
|
[136] | Zhou SR, Zhang DY (2006) Neutral theory in community ecology. Journal of Plant Ecology (Chinese Version), 30, 868-877. (in Chinese with English abstract) |
[周淑荣, 张大勇 (2006) 群落生态学的中性理论. 植物生态学报, 30, 868-877.]
DOI |
|
[137] |
Zhu BR, Zhang DY (2011) A process-based theoretical framework for community ecology. Biodiversity Science, 19, 389-399. (in Chinese with English abstract)
DOI |
[朱璧如, 张大勇 (2011) 基于过程的群落生态学理论框架. 生物多样性, 19, 389-399.]
DOI |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[4] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[5] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[6] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[7] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[8] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[9] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[10] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[11] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[12] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[13] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[14] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[15] | 李治霖, 多立安, 李晟, 王天明. 陆生食肉动物竞争与共存研究概述[J]. 生物多样性, 2021, 29(1): 81-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn