生物多样性 ›› 2021, Vol. 29 ›› Issue (1): 21-31. DOI: 10.17520/biods.2020192
董雷1(), 王静1,4, 刘永刚2, 赵志平3, 米湘成1, 郭柯1,4,*()
收稿日期:
2020-05-07
接受日期:
2020-07-16
出版日期:
2021-01-20
发布日期:
2020-09-01
通讯作者:
郭柯
基金资助:
Lei Dong1(), Jing Wang1,4, Yonggang Liu2, Zhiping Zhao3, Xiangcheng Mi1, Ke Guo1,4,*()
Received:
2020-05-07
Accepted:
2020-07-16
Online:
2021-01-20
Published:
2020-09-01
Contact:
Ke Guo
摘要:
灌丛是太行山地区最重要的生态系统类型之一, 灌丛群落生物多样性的维持及其生态系统服务功能对京津冀地区的生态安全具有重要作用。本研究选择太行山最具代表性的两种灌木群落——荆条(Vitex negundo var. heterophylla)灌丛和三裂绣线菊(Spiraea trilobata)灌丛为研究对象, 利用净亲缘关系指数(net relatedness index, NRI)和多元回归等方法探究了两种灌丛群落构建机制的异同及主要的环境影响因子, 同时还利用谱系结构主坐标分析(principal coordinates of phylogenetic structure, PCPS)对决定群落谱系结构的关键系统发育节点进行了探究。结果表明: 两种灌丛群落内灌木植物的物种多样性没有显著差异, 但谱系结构差异显著。三裂绣线菊群落表现出显著的谱系发散趋势, 而荆条群落谱系聚集程度高于三裂绣线菊群落, 但未表现出显著的谱系结构。三裂绣线菊灌丛群落构建的驱动机制是生态位分化, 荆条灌丛中生境过滤作用有所增加, 与生态位分化共同驱动其群落构建过程。与干旱胁迫相关的生境过滤因素增加是荆条灌丛群落谱系聚集程度增加的重要原因。PCPS二维排序结果表明: 荆条灌丛群落谱系趋向聚集与其群落内缺乏蔷薇目、壳斗目等亲缘关系较远的类群有关, 而三裂绣线菊灌丛群落内物种则包含较多的演化分支。总体而言, 环境过滤不是决定太行山地区灌丛群落构建的主要驱动因素, 但水分条件仍然是影响区域群落谱系结构的重要因素。
董雷, 王静, 刘永刚, 赵志平, 米湘成, 郭柯 (2021) 太行山北段地区荆条灌丛和三裂绣线菊灌丛群落谱系结构. 生物多样性, 29, 21-31. DOI: 10.17520/biods.2020192.
Lei Dong, Jing Wang, Yonggang Liu, Zhiping Zhao, Xiangcheng Mi, Ke Guo (2021) Phylogenetic structure of Vitex negundo var. heterophylla shrub communities and Spiraea trilobata shrub communities in the North Taihang Mountains. Biodiversity Science, 29, 21-31. DOI: 10.17520/biods.2020192.
图1 太行山北段地区荆条灌丛(圆圈)和三裂绣线菊灌丛(三角)样地分布示意图
Fig. 1 Location of Vitex negundo var. heterophylla shrub (circle) and Spiraea trilobata shrub (triangle) sample sites in the North Taihang Mountains
图2 11项环境因子在主成分分析(PCA)前两轴上的分布
Fig. 2 Distribution of 11 environmental factors on the first two axes of the principal components analysis (PCA). AI, Aridity index; Pmax, Precipitation of wettest month; AP, Annual precipitation; Pmin, Precipitation of driest month; Tmax, Max. temperature of warmest month; Tmin, Min. temperature of coldest month; MAT, Mean annual temperature; PET, Potential evapotranspiration.
图3 本研究涉及的所有物种谱系树。Vitex和Spiraea分别表示一个典型的荆条灌丛(NRI = 0.05)和三裂绣线菊灌丛(NRI = -0.87)的群落组成。IV: 群落中对应物种的重要值(%)。节点A: 桔梗分支; 节点B: 唇形分支; 节点C: 超菊类分支下的其他分支; 节点D: 豆科; 节点E: 超蔷薇分支下的其他分支。
Fig. 3 Phylogenetic tree of all species involved in this study. Vitex and Spiraea represent the communities’ composition of a typical Vitex negundo var. heterophylla shrub (NRI = 0.05) and Spiraea trilobata shrub (NRI = -0.87), respectively. IV, Importance value (%) of the corresponding species in the communities. Clade-A, Campanulids; Clade-B, Lamiids; Clade-C, Other clades in Superasterids; Clade-D, Fabaceae; Clade-E, Other clades in Superrosids.
图4 荆条灌丛和三裂绣线菊灌丛群落内物种丰富度(A)、Shannon-Wiener指数(B)、Pielou均匀度指数(C)、净亲缘关系指数(D)以及谱系结构主坐标分析(PCPS)第一轴(E)和第二轴(F)分布。不同字母表示群落间差异显著(P < 0.05)。* 均值小于0 (P < 0.05)。
Fig. 4 Species richness (SR) (A), Shannon-Wiener index (H') (B), Pielou’s evenness index (E) (C), net relatedness index (NRI) (D), and first (E) and second (F) principal coordinates of phylogenetic structure (PCPS) axis of Vitex negundo var. heterophylla and Spiraea trilobata shrub communities. Different letters indicate significant difference between communities. * indicates mean is significantly less than 0.
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -0.68 | 11.02 | 29.01** |
坡向 Aspect | 1 | -0.50 | 7.62 | 20.05** |
海拔 Altitude | 1 | -0.13 | 2.25 | 5.93* |
残差 Residuals | 32 | - | 0.47 | 39.89 |
表1 太行山北段地区荆条灌丛和三裂绣线菊灌丛净亲缘关系指数(NRI)与环境因子的多元回归(仅展示影响显著的因子)
Table 1 Multiple regression between Vitex negundo var. heterophylla shrubs’ and Spiraea trilobata shrubs’ net relatedness index (NRI) and environmental factors in the North Taihang Mountains (Only significant factors were listed)
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -0.68 | 11.02 | 29.01** |
坡向 Aspect | 1 | -0.50 | 7.62 | 20.05** |
海拔 Altitude | 1 | -0.13 | 2.25 | 5.93* |
残差 Residuals | 32 | - | 0.47 | 39.89 |
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -1.35 | 4.69 | 31.25* |
最干月降水量 Precipitation of driest month (Pmin) | 1 | 0.20 | 0.19 | 1.25 |
坡向 Aspect | 1 | -0.46 | 2.77 | 18.45 |
海拔 Altitude | 1 | 0.39 | 1.12 | 7.47 |
坡度 Slope | 1 | -0.61 | 0.61 | 4.04 |
最冷月最低温 Min. temperature of coldest month | 1 | 0.11 | 0.01 | 0.04 |
残差 Residuals | 9 | - | 0.63 | 37.50 |
表2 太行山北段地区荆条灌丛净亲缘关系指数(NRI)与环境因子的多元回归
Table 2 Multiple regression between Vitex negundo var. heterophylla shrubs’ net relatedness index (NRI) and environmental factors in the North Taihang Mountains
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -1.35 | 4.69 | 31.25* |
最干月降水量 Precipitation of driest month (Pmin) | 1 | 0.20 | 0.19 | 1.25 |
坡向 Aspect | 1 | -0.46 | 2.77 | 18.45 |
海拔 Altitude | 1 | 0.39 | 1.12 | 7.47 |
坡度 Slope | 1 | -0.61 | 0.61 | 4.04 |
最冷月最低温 Min. temperature of coldest month | 1 | 0.11 | 0.01 | 0.04 |
残差 Residuals | 9 | - | 0.63 | 37.50 |
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -0.73 | 2.09 | 9.50 |
最干月降水量 Precipitation of driest month (Pmin) | 1 | 0.45 | 0.27 | 1.24 |
坡向 Aspect | 1 | -0.52 | 3.36 | 15.28 |
海拔 Altitude | 1 | -0.78 | 0.76 | 3.43 |
坡度 Slope | 1 | -0.41 | 1.59 | 7.20 |
最冷月最低温 Min. temperature of coldest month | 1 | -0.69 | 0.93 | 4.25 |
残差 Residuals | 16 | - | 0.81 | 59.10 |
表3 太行山北段地区三裂绣线菊灌丛净亲缘关系指数(NRI)与环境因子的多元回归
Table 3 Multiple regression between Spiraea trilobata shrubs’ net relatedness index (NRI) and environmental factors in the North Taihang Mountains
变量 Variable | 自由度 df | 标准化回归系数 Standardized regression coefficient | 均方差 Mean Sq | 方差贡献率 Contribution rate of variance (%) |
---|---|---|---|---|
最湿月降水量 Precipitation of wettest month (Pmax) | 1 | -0.73 | 2.09 | 9.50 |
最干月降水量 Precipitation of driest month (Pmin) | 1 | 0.45 | 0.27 | 1.24 |
坡向 Aspect | 1 | -0.52 | 3.36 | 15.28 |
海拔 Altitude | 1 | -0.78 | 0.76 | 3.43 |
坡度 Slope | 1 | -0.41 | 1.59 | 7.20 |
最冷月最低温 Min. temperature of coldest month | 1 | -0.69 | 0.93 | 4.25 |
残差 Residuals | 16 | - | 0.81 | 59.10 |
图5 荆条灌丛(圆圈)和三裂绣线菊灌丛(三角)在PCPS前两个主坐标轴上的分布。分支A-E包含物种见图3。
Fig. 5 Scatter diagram between the first two axes of the principal coordinates of phylogenetic structure (PCPS) for Vitex negundo var. heterophylla (circle) and Spiraea trilobata (triangle) shrub communities. Species included in Clade A-E were shown in Fig. 3.
[1] | Aldana AM, Carlucci MB, Fine PVA, Stevenson PR (2017) Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia, 183, 327-335. |
[2] | Angiosperm Phylogeny Group (APG) (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20. |
[3] |
Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
URL PMID |
[4] | Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology, 93, S223-S233. |
[5] | Carlucci MB, Seger GDS, Sheil D, Amaral IL, Chuyong GB, Ferreira LV, Galatti U, Hurtado J, Kenfack D, Leal DC, Lewis SL, Lovett JC, Marshall AR, Martin E, Mugerwa B, Munishi P, Oliveira ÁCA, Razafimahaimodison JC, Rovero F, Sainge MN, Thomas D, Pillar VD, Duarte LDS (2017) Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography, 40, 521-530. |
[6] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
URL PMID |
[7] | Chai YF, Xu JS, Liu HY, Liu QR, Zheng CY, Kang MY, Liang CZ, Wang RQ, Gao XM, Zhang F, Shi FC, Liu X, Yue M (2019) Species composition and phylogenetic structure of major shrublands in North China. Chinese Journal of Plant Ecology, 43, 793-805. (in Chinese with English abstract) |
[ 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 石福臣, 刘晓, 岳明 (2019) 华北地区主要灌丛群落物种组成及系统发育结构特征. 植物生态学报, 43, 793-805.] | |
[8] | Chi YY, Xu KP, Wang JJ, Zhang LP (2018) Identifying regional ecological space in Beijing, Tianjin, and Hebei. Acta Ecologica Sinica, 38, 8555-8563. (in Chinese with English abstract) |
[ 迟妍妍, 许开鹏, 王晶晶, 张丽苹 (2018) 京津冀地区生态空间识别研究. 生态学报, 38, 8555-8563.] | |
[9] | Cui GF, Xing SH, Zhao B (2008) Identifying regional ecological space in Beijing, Tianjin, and Hebei. Acta Ecologica Sinica. (in Chinese) |
[ 崔国发, 邢邵华, 赵勃 (2008) 京津冀地区生态空间识别研究. 生态学报.] | |
[10] | Debastiani VJ, Duarte LDS (2014) PCPS—An R-package for exploring phylogenetic eigenvectors across metacommunities. Frontiers of Biogeography, 6, 144-148. |
[11] | Duarte LDS (2011) Phylogenetic habitat filtering influences forest nucleation in grasslands. Oikos, 120, 208-215. |
[12] | Duarte LDS, Prieto PV, Pillar VD (2012) Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography, 35, 952-960. |
[13] | Dong L (2019) Community Phylogenetic Structure of Grassland and Desert Ecosystem in Arid and Semi-arid: A Case Study of the Mongolian Plateau. PhD dissertation, Inner Mongolia University, Hohhot(in Chinese with English abstract) |
[ 董雷 (2019) 干旱-半干旱区草地与灌丛群落谱系结构研究. 博士学位论文, 内蒙古大学, 呼和浩特.] | |
[14] | Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001) Vegetation Atlas of China(1:1000000) Science Press, Beijing.(in Chinese) |
[ 中国科学院中国植被图编辑委员会(2001) 1:1000000中国植被图集, 科学出版社.] 北京: | |
[15] | Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009) Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548. (in Chinese with English abstract) |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009) 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[16] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
URL PMID |
[17] | Hu S, Zhao RX, Jia YW, Niu CW, Liu LMZ, Zhan CS (2018) The characteristic of vegetation vertical zonality and the influential factors in typical mountains in China. Chinese Journal of Nature, 40(1), 12-16. (in Chinese with English abstract) |
[ 胡实, 赵茹欣, 贾仰文, 牛存稳, 刘梁美子, 占车生 (2018) 中国典型山地植被垂直地带性特征及其影响要素. 自然杂志, 40(1), 12-16.] | |
[18] | Huang JX, Zheng FY, Mi XC (2010) Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chinese Journal of Plant Ecology, 34, 309-315. (in Chinese with English abstract) |
[ 黄建雄, 郑凤英, 米湘成 (2010) 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响. 植物生态学报, 34, 309-315.] | |
[19] | Jin Y, Qian H (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359. |
[20] |
Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 24, 694-701.
URL PMID |
[21] |
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria- Auza RW, Zimmermann NE, Peter Linder H, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122.
DOI URL PMID |
[22] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
URL PMID |
[23] | Li JL, Zhang JT (2006) Plant species diversity in the middle part of the Taihang Mountain. Chinese Journal of Applied and Environmental Biology, 12, 766-771. (in Chinese with English abstract) |
[ 李军玲, 张金屯 (2006) 太行山中段植物群落物种多样性与环境的关系. 应用与环境生物学报, 12, 766-771.] | |
[24] | Li XH, Zhu XX, Niu Y, Sun H (2014) Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, Southwest China. Journal of Systematics and Evolution, 52, 280-288. |
[25] | Liu HX, Gu JC, Lu SW, Gu WH, Yu JJ (2009) Study on forest community characters and species diversity of Xiaowutai. Chinese Agricultural Science Bulletin, 25, 97-100. (in Chinese with English abstract) |
[ 刘红霞, 谷建才, 鲁绍伟, 谷卫华, 于景金 (2009) 小五台森林群落特征及林下物种多样性研究. 中国农学通报, 25, 97-100.] | |
[26] | Liu L (1996) Vegetation of Hebei. Science Press, Beijing. (in Chinese) |
[ 刘濂 (1996) 河北植被. 科学出版社, 北京.] | |
[27] | Lü GX, Chen YM, Zou CX, Feng CY, Hao FF (2017) Spatial pattern and driving factors of vegetation degradation in Beijing-Tianjin-Hebei. Journal of Ecology and Rural Environment, 33, 417-425. (in Chinese with English abstract) |
[ 吕国旭, 陈艳梅, 邹长新, 冯朝阳, 郝芳芳 (2017) 京津冀植被退化的空间格局及人为驱动因素分析. 生态与农村环境学报, 33, 417-425.] | |
[28] |
Marcoulides KM, Raykov T (2019) Evaluation of variance inflation factors in regression models using latent variable modeling methods. Educational and Psychological Measurement, 79, 874-882.
URL PMID |
[29] | Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community Ecology Package, 10, 631-637. |
[30] | Qian H, Hao ZQ, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165. |
[31] | Qian H, Sandel B (2017) Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecology and Biogeography, 26, 1258-1269. |
[32] | Qin H, Zhang YB, Dong G, Zhang F (2019) Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 43, 762-773. (in Chinese with English abstract) |
[ 秦浩, 张殷波, 董刚, 张峰 (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43, 762-773.] | |
[33] | R Team Core (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/(accessed on 2019- 03-11) |
[34] |
Smith SA, Brown JW (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302-314.
DOI URL PMID |
[35] |
Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780.
DOI URL PMID |
[36] |
Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424.
DOI URL PMID |
[37] | Tan LM, Li HJ, Liu HT, Liu HJ, Liu JT (2010) Spatial distribution characteristics of arable lands in Taihang Mountain area of Hebei Province. Chinese Journal of Eco-Agriculture, 18, 872-875. (in Chinese with English abstract) |
[ 谭莉梅, 李红军, 刘慧涛, 刘宏娟, 刘金铜 (2010) 河北省太行山区域耕地资源空间分布特征研究. 中国生态农业学报, 18, 872-875.] | |
[38] |
Tang LL, Yang T, Liu HY, Kang MY, Wang RQ, Zhang F, Gao XM, Yue M, Zhang M, Zheng PF, Shi FC (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China. Chinese Journal of Plant Ecology, 43, 825-833. (in Chinese with English abstract)
DOI URL |
[ 唐丽丽, 杨彤, 刘鸿雁, 康慕谊, 王仁卿, 张峰, 高贤明, 岳明, 张梅, 郑璞帆, 石福臣 (2019) 华北地区荆条灌丛分布及物种多样性空间分异规律. 植物生态学报, 43, 825-833.] | |
[39] | Verdú M, Rey PJ, Alcántara JM, Siles G, Valiente-Banuet A (2009) Phylogenetic signatures of facilitation and competition in successional communities. Journal of Ecology, 97, 1171-1180. |
[40] |
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145-155.
DOI URL PMID |
[41] | Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[42] | Xiao YM, Yang LC, Nie XQ, Li CB, Xiong F, Zhao XH, Zhou GY (2018) Phylogenetic Structure of desert shrub community in Qaidam Basin. Acta Botanica Boreali- Occidentalia Sinica, 38, 750-760. (in Chinese with English abstract) |
[ 肖元明, 杨路存, 聂秀青, 李长斌, 熊丰, 赵晓辉, 周国英 (2018) 柴达木盆地荒漠灌丛群落谱系结构研究. 西北植物学报, 38, 750-760.] | |
[43] |
Yang YH, Wang ZP, Sakura Y, Tang CY, Shindo S (2002) Effects of global warming on productivity and soil moisture in Taihang Mountain: A transplant study. Chinese Journal of Applied Ecology, 13, 667-671. (in Chinese with English abstract)
URL PMID |
[ 杨永辉, 王智平, 佐仓保夫, 唐常源, 新藤静夫 (2002) 全球变暖对太行山植被生产力及土壤水分的影响. 应用生态学报, 13, 667-671.] | |
[44] | Yu XX, Zhang XM, Wang XB (2008) Vegetation community features and succession law of natural shrubs in Beijing mountainous area. Journal of Beijing Forestry University, 30(S2), 107-111. (in Chinese with English abstract) |
[ 余新晓, 张晓明, 王雄宾 (2008) 北京山区天然灌丛植被群落特征与演替规律. 北京林业大学学报, 30(S2), 107-111.] | |
[45] | Zhang JT, Xi Y, Li J (2006) The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Community Ecology, 7, 155-163. |
[46] | Zhang WK, Li H, Wang GH (2013) Community characteristics of main vegetation types along two altitudinal transects on mountains of northwestern Beijing, China. Chinese Journal of Plant Ecology, 37, 566-570. (in Chinese) |
[ 张维康, 李贺, 王国宏 (2013) 北京西北部山地两个垂直样带内主要植被类型的群落特征. 植物生态学报, 37, 566-570.] | |
[47] | Zhao FY, Liu F, Cheng J, Tang XF, Shi ZH (2016) Vegetation characteristics of subalpine meadow community in Lingshan Mountain of Beijing City. Bulletin of Soil and Water Conservation, 36(3), 165-171. (in Chinese with English abstract) |
[ 赵方莹, 刘飞, 程婕, 唐晓芬, 史振华 (2016) 北京市灵山亚高山草甸植被群落特征. 水土保持通报, 36(3), 165-171.] | |
[48] | Zhao MF, Xue F, Wang YH, Wang GY, Xing KX, Kang MY, Wang JL (2017) Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 41, 707-715. (in Chinese with English abstract) |
[ 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰 (2017) 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 41, 707-715.] | |
[49] | Zhao SQ, Fang JY, Zong ZJ, Zhu B, Shen HH (2004) Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China, 12, 164-173. (in Chinese with English abstract) |
[ 赵淑清, 方精云, 宗占江, 朱彪, 沈海花 (2004) 长白山北坡植物群落组成、结构及物种多样性的垂直分布. 生物多样性, 12, 164-173.] | |
[50] | Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126, 67-80. |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[4] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[5] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[6] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[7] | 周天祥, 杨华林, 张贵权, 杨建, 冯茜, 胡强, 程跃红, 张晋东, 王彬, 周材权. 四川卧龙国家级自然保护区三种高山同域鸡形目鸟类的时空生态位比较[J]. 生物多样性, 2022, 30(6): 22026-. |
[8] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[9] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[10] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[11] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[12] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[13] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[14] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[15] | 邹怡. 样本量不一致时的β多样性计算[J]. 生物多样性, 2021, 29(6): 790-797. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn