生物多样性 ›› 2024, Vol. 32 ›› Issue (3): 23302. DOI: 10.17520/biods.2023302
• 研究报告: 植物多样性 • 下一篇
吕晓波1,2, 李东海1, 杨小波1,*(), 张孟文1,2
收稿日期:
2023-08-29
接受日期:
2023-11-21
出版日期:
2024-03-20
发布日期:
2024-04-07
通讯作者:
*E-mail: yanfengxb@163.com
基金资助:
Xiaobo Lü1,2, Donghai Li1, Xiaobo Yang1,*(), Mengwen Zhang1,2
Received:
2023-08-29
Accepted:
2023-11-21
Online:
2024-03-20
Published:
2024-04-07
Contact:
*E-mail: yanfengxb@163.com
摘要:
红树林是生长在热带、亚热带海湾河口潮间带的受到周期性海水淹浸的木本植物群落, 红树植物如何适应潮间带环境、实现多物种分离共存一直是研究的热点。生态位理论是解释群落物种共存的重要理论和方法之一, 而幼苗是种群更新的基础。因此, 本研究选取海南岛分布较广的6种红树植物幼苗, 通过人工控制海水盐度、淹没时间和光照强度模拟不同的潮间带环境, 构建了一个微型的红树林小群落。通过测定这6种幼苗在不同控制环境中的净光合速率, 统计分析幼苗在海水盐度、淹水时间和光照强度3种资源条件下的生态位宽度、生态位重叠和生态位偏离程度, 尝试阐述红树植物在潮间带中分离共存的机制。结果表明: 在淹水方面, 6种幼苗的生态位宽度最大的为白骨壤(Avicennia marina) (0.956), 角果木(Ceriops tagal) (0.906)最小; 白骨壤、桐花树(Aegiceras corniculatum)和红海榄(Rhizophora stylosa)的生态位重叠度较高, 秋茄(Kandelia obovata)、海莲(Bruguiera sexangula)和角果木的生态位重叠度较高。生态位分离程度反映出在理论生态位中心是12 h/d的物种中, 白骨壤(0.698)适应淹水的范围较大, 在理论生态位中心是8 h/d的物种中秋茄(0.185)适应淹水的范围较大, 在理论生态位中心是4 h/d的物种中海莲(0.115)适应淹水的范围较大。在盐度资源方面, 生态位宽度最大的为白骨壤(0.987), 秋茄(0.496)最小; 白骨壤、桐花树和红海榄的生态位重叠度高, 海莲和角果木的生态位重叠度高, 秋茄与其他物种的生态位重叠度均不高。生态位分离程度反映出理论生态中心为20的物种中白骨壤(4.357)适应盐度的范围较大, 理论生态位中心是10的物种中角果木(10.594)适应盐度的范围较大。在光照资源方面, 生态位宽度最大的为角果木(0.995), 白骨壤(0.828)最小; 6种红树植物的生态位重叠度均较高; 生态位分离程度反映出理论生态中心为100%光照的物种中红海榄(23.138)适应光照的范围较大, 理论生态位中心是80%光照的物种中角果木(12.522)适应光照的范围较大。结合各物种在淹水、盐度和光照资源上的生态位分析, 可以看出它们在淹水和盐度资源上的生态位分化相对较早且明显, 各物种占据不同的淹水和盐度生态位, 生态位重叠程度相对较低, 对淹水和盐度资源的竞争较弱, 进而实现在潮间带中的分离共存; 而在光照资源上的生态位分化相对较晚且不明显, 多数为阳生植物, 生态位重叠程度较高, 对光照的竞争相对较强。
吕晓波, 李东海, 杨小波, 张孟文 (2024) 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存. 生物多样性, 32, 23302. DOI: 10.17520/biods.2023302.
Xiaobo Lü, Donghai Li, Xiaobo Yang, Mengwen Zhang (2024) The species coexisted in mangrove communities through niche differentiation of flooding time and salinity. Biodiversity Science, 32, 23302. DOI: 10.17520/biods.2023302.
图1 实验处理设置示意图。光照处理: G1, 100%光照; G2, 80%光照; G3, 60%光照; G4, 20%光照。盐度处理: S1, 10; S2, 20; S3, 30; S4, 40。淹水处理: T1, 4 h/d; T2, 8 h/d; T3, 12 h/d; T4, 16 h/d。
Fig. 1 Schematic diagram of experimental treatment setup. Flooding treatment: T1, 4 h/d; T2, 8 h/d; T3, 12 h/d; T4, 16 h/d. Salinity treatment: S1, 10; S2, 20; S3, 30; S4, 40. Light treatment: G1, 100% light; G2, 80% light; G3, 60% light; G4, 20% light.
图2 6种幼苗在不同环境条件下的净光合速率(平均值 ± 标准差)。淹水处理: T1, 4 h/d; T2, 8 h/d; T3, 12 h/d; T4, 16 h/d。盐度处理: S1, 10; S2, 20; S3, 30; S4, 40。光照处理: G1, 100%光照; G2, 80%光照; G3, 60%光照; G4, 20%光照。不同小写字母表示差异显著(P < 0.05)。
Fig. 2 Net photosynthetic rate of 6 kinds of seedlings under different environmental conditions (mean ± SD). Flooding treatment: T1, 4 h/d; T2, 8 h/d; T3, 12 h/d; T4, 16 h/d. Salinity treatment: S1, 10; S2, 20; S3, 30; S4, 40. Light treatment: G1, 100% light; G2, 80% light; G3, 60% light; G4, 20% light. Different lowercase letters indicate significant differences (P < 0.05).
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.928 | 0.854 | 0.856 | 0.875 | 0.971 | 0.924 | 8 | 7.185 | 0.185 | |
白骨壤 Avicennia marina | 0.956 | 0.988 | 0.970 | 0.825 | 0.827 | 12 | 12.698 | 0.698 | ||
桐花树 Aegiceras corniculatum | 0.949 | 0.960 | 0.828 | 0.830 | 12 | 12.606 | 0.606 | |||
红海榄 Rhizophora stylosa | 0.930 | 0.307 | 0.848 | 12 | 11.832 | 0.168 | ||||
角果木 Ceriops tagal | 0.906 | 0.928 | 8 | 6.909 | 0.091 | |||||
海莲 Bruguiera sexangula | 0.924 | 4 | 3.885 | 0.115 |
表1 不同红树植物幼苗在淹水时间上的生态位宽度、生态位重叠和生态位偏离
Table 1 Niche width, niche overlap, and niche shift analysis of different mangrove seedlings in flooding time resources
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.928 | 0.854 | 0.856 | 0.875 | 0.971 | 0.924 | 8 | 7.185 | 0.185 | |
白骨壤 Avicennia marina | 0.956 | 0.988 | 0.970 | 0.825 | 0.827 | 12 | 12.698 | 0.698 | ||
桐花树 Aegiceras corniculatum | 0.949 | 0.960 | 0.828 | 0.830 | 12 | 12.606 | 0.606 | |||
红海榄 Rhizophora stylosa | 0.930 | 0.307 | 0.848 | 12 | 11.832 | 0.168 | ||||
角果木 Ceriops tagal | 0.906 | 0.928 | 8 | 6.909 | 0.091 | |||||
海莲 Bruguiera sexangula | 0.924 | 4 | 3.885 | 0.115 |
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.496 | 0.544 | 0.560 | 0.546 | 0.573 | 0.593 | 10 | 14.546 | 4.546 | |
白骨壤 Avicennia marina | 0.987 | 0.974 | 0.997 | 0.856 | 0.844 | 20 | 24.357 | 4.357 | ||
桐花树 Aegiceras corniculatum | 0.985 | 0.974 | 0.882 | 0.867 | 20 | 23.379 | 3.379 | |||
红海榄 Rhizophora stylosa | 0.982 | 0.889 | 0.843 | 20 | 22.488 | 2.488 | ||||
角果木 Ceriops tagal | 0.971 | 0.980 | 10 | 20.594 | 10.594 | |||||
海莲 Bruguiera sexangula | 0.961 | 10 | 18.667 | 8.667 |
表2 不同红树植物幼苗在海水盐度上的生态位宽度、生态位重叠和生态位偏离
Table 2 Niche width, niche overlap, and niche shift analysis of different mangrove seedlings in seawater salinity resources
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.496 | 0.544 | 0.560 | 0.546 | 0.573 | 0.593 | 10 | 14.546 | 4.546 | |
白骨壤 Avicennia marina | 0.987 | 0.974 | 0.997 | 0.856 | 0.844 | 20 | 24.357 | 4.357 | ||
桐花树 Aegiceras corniculatum | 0.985 | 0.974 | 0.882 | 0.867 | 20 | 23.379 | 3.379 | |||
红海榄 Rhizophora stylosa | 0.982 | 0.889 | 0.843 | 20 | 22.488 | 2.488 | ||||
角果木 Ceriops tagal | 0.971 | 0.980 | 10 | 20.594 | 10.594 | |||||
海莲 Bruguiera sexangula | 0.961 | 10 | 18.667 | 8.667 |
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.936 | 0.929 | 0.930 | 0.917 | 0.914 | 0.920 | 100 | 77.683 | 22.317 | |
白骨壤 Avicennia marina | 0.828 | 0.920 | 0.911 | 0.912 | 0.917 | 100 | 80.470 | 19.530 | ||
桐花树 Aegiceras corniculatum | 0.988 | 0.966 | 0.979 | 0.954 | 80 | 71.628 | 8.372 | |||
红海榄 Rhizophora stylosa | 0.958 | 0.907 | 0.956 | 100 | 76.862 | 23.138 | ||||
角果木 Ceriops tagal | 0.995 | 0.955 | 80 | 67.478 | 12.522 | |||||
海莲 Bruguiera sexangula | 0.974 | 80 | 71.919 | 8.081 |
表3 不同红树植物幼苗在光照强度上的生态位宽度、生态位重叠和生态位偏离
Table 3 Niche width, niche overlap, and niche shift analysis of different mangrove seedlings in light intensity resources
物种 Species | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 生态位偏离 Niche shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
秋茄 Kandelia obovata | 白骨壤 Avicennia marina | 桐花树 Aegiceras corniculatum | 红海榄 Rhizophora stylosa | 角果木 Ceriops tagal | 海莲 Bruguiera sexangula | 理论生态位中心 Theoretical niche center | 现实生态位中心 Realistic niche center | 偏离程度 Shift degree | ||
秋茄 Kandelia obovata | 0.936 | 0.929 | 0.930 | 0.917 | 0.914 | 0.920 | 100 | 77.683 | 22.317 | |
白骨壤 Avicennia marina | 0.828 | 0.920 | 0.911 | 0.912 | 0.917 | 100 | 80.470 | 19.530 | ||
桐花树 Aegiceras corniculatum | 0.988 | 0.966 | 0.979 | 0.954 | 80 | 71.628 | 8.372 | |||
红海榄 Rhizophora stylosa | 0.958 | 0.907 | 0.956 | 100 | 76.862 | 23.138 | ||||
角果木 Ceriops tagal | 0.995 | 0.955 | 80 | 67.478 | 12.522 | |||||
海莲 Bruguiera sexangula | 0.974 | 80 | 71.919 | 8.081 |
[1] | Barik J, Mukhopadhyay A, Ghosh T, Mukhopadhyay SK, Chowdhury SM, Hazra S (2018) Mangrove species distribution and water salinity: An indicator species approach to Sundarban. Journal of Coastal Conservation, 22, 361-368. |
[2] | Bazzaz FA (1979) The physiological ecology of plant succession. Annual Review of Ecology and Systematics, 10, 351-371. |
[3] | Christian R (2005) Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. Trees, 19, 596-606. |
[4] | Ferry Slik JW, Arroyo-Rodríguez V, Aiba SI, Alvarez-Loayza P, Alves LF, Ashton P, Balvanera P, Bastian ML, Bellingham PJ, van den Berg E, Bernacci L, da Conceição Bispo P, Blanc L, Böhning-Gaese K, Boeckx P, Bongers F, Boyle B, Bradford M, Brearley FQ, Hockemba MBN, Bunyavejchewin S, Matos DCL, Castillo-Santiago M, Catharino ELM, Chai SL, Chen YK, Colwell RK, Chazdon RL, Clark C, Clark DB, Clark DA, Culmsee H, Damas K, Dattaraja HS, Dauby G, Davidar P, DeWalt SJ, Doucet JL, Duque A, Durigan G, Eichhorn KAO, Eisenlohr PV, Eler E, Ewango C, Farwig N, Feeley KJ, Ferreira L, Field R, de Oliveira Filho AT, Fletcher C, Forshed O, Franco G, Fredriksson G, Gillespie T, Gillet JF, Amarnath G, Griffith DM, Grogan J, Gunatilleke N, Harris D, Harrison R, Hector A, Homeier J, Imai N, Itoh A, Jansen PA, Joly CA, de Jong BHJ, Kartawinata K, Kearsley E, Kelly DL, Kenfack D, Kessler M, Kitayama K, Kooyman R, Larney E, Laumonier Y, Laurance S, Laurance WF, Lawes MJ, do Amaral IL, Letcher SG, Lindsell J, Lu XH, Mansor A, Marjokorpi A, Martin EH, Meilby H, Melo FPL, Metcalfe DJ, Medjibe VP, Metzger JP, Millet J, Mohandass D, Montero JC, de Morisson Valeriano M, Mugerwa B, Nagamasu H, Nilus R, Ochoa-Gaona S, Onrizal, Page N, Parolin P, Parren M, Parthasarathy N, Paudel E, Permana A, Piedade MTF, Pitman NCA, Poorter L, Poulsen AD, Poulsen J, Powers J, Prasad RC, Puyravaud JP, Razafimahaimodison JC, Reitsma J, Dos Santos JR, Spironello WR, Romero-Saltos H, Rovero F, Rozak AH, Ruokolainen K, Rutishauser E, Saiter F, Saner P, Santos BA, Santos F, Sarker SK, Satdichanh M, Schmitt CB, Schöngart J, Schulze M, Suganuma MS, Sheil D, da Silva Pinheiro E, Sist P, Stevart T, Sukumar R, Sun IF, Sunderland T, Suresh HS, Suzuki E, Tabarelli M, Tang J, Targhetta N, Theilade I, Thomas DW, Tchouto P, Hurtado J, Valencia R, Van Do T, Vasquez R, Verbeeck H, Adekunle V, Vieira SA, Webb CO, Whitfeld T, Wich SA, Williams J, Wittmann F, Wöll H, Yang XB, Yao CA, Yap SL, Yoneda T, Zahawi RA, Zakaria R, Zang RG, de Assis RL, Luize BG, Venticinque EM (2015) An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, USA, 112, 7472-7477. |
[5] | Friess DA, Rogers K, Lovelock CE, Krauss KW, Hamilton SE, Lee SY, Lucas R, Primavera J, Rajkaran A, Shi SH (2019) The state of the world’s mangrove forests: Past, present, and future. Annual Review of Environment and Resources, 44, 89-115. |
[6] |
Germain RR, Arcese P (2014) Distinguishing individual quality from habitat preference and quality in a territorial passerine. Ecology, 95, 436-445.
PMID |
[7] |
Godoy O, Kraft NJB, Levine JM (2014) Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 17, 836-844.
DOI PMID |
[8] | Han BC, Umaña MN, Mi XC, Liu XJ, Chen L, Wang YQ, Liang Y, Wei W, Ma KP (2017) The role of transcriptomes linked with responses to light environment on seedling mortality in a subtropical forest, China. Journal of Ecology, 105, 592-601. |
[9] | Huxham M, Kumara MP, Jayatissa LP, Krauss KW, Kairo J, Langat J, Mencuccini M, Skov MW, Kirui B (2010) Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2127-2135. |
[10] |
Kapos V (2017) Seeing the forest through the trees. Science, 355, 347-349.
DOI PMID |
[11] | Khairil M, Juliana WW, Nizam M (2014) Edaphic influences on tree species composition and community structure in a tropical watershed forest in Peninsular Malaysia. Journal of Tropical Forest Science, 26, 284-294. |
[12] | Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599. |
[13] | Liang SC (1997) A study on the niches of mangrove populations in the succession of Rhizophora stylosa community. Guangxi Sciences, 4, 120-123. (in Chinese with English abstract) |
[ 梁士楚 (1997) 红海榄群落演替中种群生态位的研究. 广西科学, 4, 120-123.] | |
[14] | Liao BW, Li M, Zheng SF, Chen YJ, Zhong CR, Huang ZQ (2005) Niches of several mangrove species in Dongzhai Harbor of Hainan Island. Chinese Journal of Applied Ecology, 16, 403-407. (in Chinese with English abstract) |
[ 廖宝文, 李玫, 郑松发, 陈玉军, 钟才荣, 黄仲琪 (2005) 海南岛东寨港几种红树植物种间生态位研究. 应用生态学报, 16, 403-407.] | |
[15] | Liao BW, Qiu FY, Tan FY, Zeng WJ, Xu DP (2009) Study on the adaptability of mangrove Kandelia candel seedlings to simulated tidal inundation. Journal of South China Agricultural University, 30(3), 49-54. (in Chinese with English abstract) |
[ 廖宝文, 邱凤英, 谭凤仪, 曾雯珺, 徐大平 (2009) 红树植物秋茄幼苗对模拟潮汐淹浸时间的适应性研究. 华南农业大学学报, 30(3), 49-54.] | |
[16] | Liao BW, Zhang QM (2014) Area, distribution and species composition of mangroves in China. Wetland Science, 12, 435-440. (in Chinese with English abstract) |
[ 廖宝文, 张乔民 (2014) 中国红树林的分布、面积和树种组成. 湿地科学, 12, 435-440.] | |
[17] | Lin P (1997) Mangrove Ecosystem in China. Science Press, Beijing. (in Chinese) |
[ 林鹏 (1997) 中国红树林生态系统. 科学出版社, 北京.] | |
[18] | Lundholm JT, Larson DW (2003) Temporal variability in water supply controls seedling diversity in limestone pavement microcosms. Journal of Ecology, 91, 966-975. |
[19] | Lundholm JT, Stark KE (2007) Alvar seed bank germination responses to variable soil moisture. Canadian Journal of Botany, 85, 986-993. |
[20] | Ma LY, Huang JJ (2019) Characteristics of populations structure and niche of mangrove community in Techeng Island. Protection Forest Science and Technology, (7), 9-12. (in Chinese with English abstract) |
[ 马立宇, 黄剑坚 (2019) 特呈岛红树植物群落特征及生态位研究. 防护林科技, (7), 9-12.] | |
[21] |
McGill BJ (2010) Towards a unification of unified theories of biodiversity. Ecology Letters, 13, 627-642.
DOI PMID |
[22] | Nong SQ, Yang XB, Li DH, Yang LR, Xu ZL, Chen YK, Luo ZM (2011) Vegetation composition in the Mangrove Forest Nature Protection Area of Qinglan, China. Plant Science Journal, 29, 459-466. (in Chinese with English abstract) |
[ 农寿千, 杨小波, 李东海, 杨立荣, 徐中亮, 陈玉凯, 罗召美 (2011) 清澜港红树林保护区植物特点研究. 植物科学学报, 29, 459-466.] | |
[23] | Nybaken JW (translated by Lin ZH, Li HP (1991) Marine Biology:An Ecological Approach. China Ocean Press, Beijing. (in Chinese) |
[ 林志恒, 李和平译, (1991) 海洋生物学: 生态学探讨. 海洋出版社, 北京.] | |
[24] | Pan SF, Luo HW, Niu BC (2018) Effects of niche width on the distribution pattern of main species of mangrove community. Sichuan Forestry Exploration and Design, (2), 1-7, 12. (in Chinese) |
[ 潘淑芳, 罗海威, 牛秉才 (2018) 生态位宽度对红树林植物群落主要种群分布格局的影响. 四川林勘设计, (2), 1-7, 12.] | |
[25] | Rayburn AP, Monaco TA (2011) Linking plant spatial patterns and ecological processes in grazed great basin plant communities. Rangeland Ecology & Management, 64, 276-282. |
[26] | Sarvade S, Gupta B, Singh M (2016) Composition, diversity and distribution of tree species in response to changing soil properties with increasing distance from water source—A case study of Gobind Sagar Reservoir in India. Journal of Mountain Science, 13, 522-533. |
[27] | Shiau YJ, Lee SC, Chen TH, Tian GL, Chiu CY (2017) Water salinity effects on growth and nitrogen assimilation rate of mangrove (Kandelia candel) seedlings. Aquatic Botany, 137, 50-55. |
[28] | Shih SS, Yang SC, Lee HY, Hwang GW, Hsu YM (2011) Development of a salinity-secondary flow-approach model to predict mangrove spreading. Ecological Engineering, 37, 1174-1183. |
[29] | Silvertown J (2004) Sustainability in a nutshell. Trends in Ecology & Evolution, 19, 276-278. |
[30] |
Stanley Harpole W, Tilman D (2006) Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15-23.
PMID |
[31] |
Stork NE, Srivastava DS, Eggleton P, Hodda M, Lawson G, Leakey RRB, Watt AD (2017) Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conservation Biology, 31, 924-933.
DOI PMID |
[32] | Tomlinson PB (2016) The Botany of Mangroves, 2nd edn. Cambridge University Press, New York. |
[33] | Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206. |
[34] | Yang SC, Riddin T, Adams JB, Shih SS (2014) Predicting the spatial distribution of mangroves in a South African Estuary in response to sea level rise, substrate elevation change and a sea storm event. Journal of Coastal Conservation, 18, 459-469. |
[35] | Yang XB (2002) Study on adaptability to environment for 4 tree species at different successional stages grown in south subtropical zone. Scientia Silvae Sinicae, (1), 56-60. (in Chinese with English abstract) |
[ 杨小波 (2002) 南亚热带4个不同演替阶段树种苗木环境适应性研究. 林业科学, (1), 56-60.] | |
[36] | You HM (2015) Adaptability of mangrove Kandelia obovata seedlings to salinity-waterlogging. Chinese Journal of Applied Ecology, 26, 675-680. (in Chinese with English abstract) |
[ 游惠明 (2015) 秋茄幼苗对盐度、淹水环境的生长适应. 应用生态学报, 26, 675-680.] | |
[37] | Yu DY, Fan ZF, Ma CL, Li MM (2022) Spatial distribution pattern and niche of Torreya yunnanensis population. Journal of West China Forestry Science, 51(5), 9-15. (in Chinese with English abstract) |
[ 于达勇, 樊智丰, 马长乐, 李瞒瞒 (2022) 云南榧树种群空间分布格局及生态位研究. 西北林业科学, 51(5), 9-15.] | |
[38] | Yu SX, Orloci L (1993) On the implication of fundamental, realized niche and niche center. Acta Scientiarum Naturalium Uiversitatis Sunyatseni, 32(4), 69-80. (in Chinese with English abstract) |
[ 余世孝, L·奥罗西 (1993) 基础与实现生态位及其中心点的涵义与测度. 中山大学学报(自然科学版), 32(4), 69-80.] |
[1] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[2] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[3] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[4] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[5] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[6] | 彭步青, 陶玲, 李靖, 范荣辉, 陈顺德, 付长坤, 王琼, 唐刻意. 基于DNA宏条形码研究四川老君山国家级自然保护区6种同域共存小型哺乳动物的食性[J]. 生物多样性, 2023, 31(4): 22474-. |
[7] | 付树森, 宋普庆, 李渊, 李袁源, 张然, 张琥顺, 王芮, 林龙山. 白令海与楚科奇海鱼类营养级与营养生态位[J]. 生物多样性, 2023, 31(4): 22521-. |
[8] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[9] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[10] | 李婷婷, 朱锡红, 吴光年, 宋虓, 徐爱春. 镇海棘螈产卵场微生境选择[J]. 生物多样性, 2023, 31(1): 22293-. |
[11] | 李治霖, 王天明. 亚洲同域分布虎和豹竞争与共存关系概述[J]. 生物多样性, 2022, 30(9): 22271-. |
[12] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[13] | 周天祥, 杨华林, 张贵权, 杨建, 冯茜, 胡强, 程跃红, 张晋东, 王彬, 周材权. 四川卧龙国家级自然保护区三种高山同域鸡形目鸟类的时空生态位比较[J]. 生物多样性, 2022, 30(6): 22026-. |
[14] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[15] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn