生物多样性 ›› 2017, Vol. 25 ›› Issue (12): 1295-1302. DOI: 10.17520/biods.2017071
付伟1, 王宁1, 庞芳1, 黄玉龙1, 吴俊1, 祁珊珊1, 戴志聪1,2,*(), 杜道林1,2
收稿日期:
2017-03-06
接受日期:
2017-12-20
出版日期:
2017-12-20
发布日期:
2017-12-10
通讯作者:
戴志聪
基金资助:
Wei Fu1, Ning Wang1, Fang Pang1, Yulong Huang1, Jun Wu1, Shanshan Qi1, Zhicong Dai1,2,*(), Daolin Du1,2
Received:
2017-03-06
Accepted:
2017-12-20
Online:
2017-12-20
Published:
2017-12-10
Contact:
Dai Zhicong
摘要:
入侵植物在全球范围的快速扩张导致了全球生物多样性的快速丧失, 这使得对其入侵机理的研究更具有现实性与紧迫性。在入侵生态学中, 以往的关注重点多集中于宏观有机体上, 但是越来越多的研究表明, 入侵植物与土壤微生物之间的相互作用关系深刻影响着入侵植物的适应性和竞争力, 在其成功入侵的过程中发挥着重要的作用。现阶段, 在土壤微生物参与的植物入侵研究中, 将微生物分为3个主要类群, 即病原微生物(microbial pathogens)、共生微生物(mutualistic microbes)和腐生微生物(saprotrophic microbes)。本文从该3个类群出发总结了土壤微生物与入侵植物之间的相互关系, 探讨其对外来植物入侵性的影响。另外, 以往的研究多单独围绕总体层次或某一维度而展开, 往往不能深入系统地揭示外来植物的入侵机理。然而, 在陆地生态系统中, 植物与微生物的相互作用关系主要始于根系, 植物的根际为微生物提供了多样的异质性栖息环境(根际土壤、根表和内生环境), 并塑造了其功能的多样性。作者建议, 今后关于土壤微生物对入侵植物影响的研究, 在借鉴快速发展的高通量测序技术拓展研究的深度和广度的同时, 同样需要注意根际微生境与宏观功能特性的结合与统一, 并建立系统而又可重复性的研究模式, 从现象特征的描述向机理阐述方向发展。
付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林 (2017) 土壤微生物与植物入侵: 研究现状与展望. 生物多样性, 25, 1295-1302. DOI: 10.17520/biods.2017071.
Wei Fu, Ning Wang, Fang Pang, Yulong Huang, Jun Wu, Shanshan Qi, Zhicong Dai, Daolin Du (2017) Soil microbiota and plant invasions: current and future. Biodiversity Science, 25, 1295-1302. DOI: 10.17520/biods.2017071.
[1] | Afkhami ME, Strauss SY (2016) Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology, 97, 1159-1169. |
[2] | Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos JN (2005) Enermy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology, 86, 2979-2989. |
[3] | Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia, 141, 612-619. |
[4] | Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and outer organisms. Annual Review of Plant Biology, 57, 233-266. |
[5] | Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 4, 165. |
[6] | Berendsen RL, Pieterse CMJ, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486. |
[7] | Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573. |
[8] | Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 9, 887-895. |
[9] | Blumenthal DM, Mitchell CE, Pyšek P, Jarošík V (2009) Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences, USA, 106, 7899-7904. |
[10] | Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos JN (2008) Novel wepaons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043-1055. |
[11] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[12] | Coats VC (2013) Microbial associates of Berberis thunbergii (Japanese barberry). PhD dissertation, University of Maine Coats VC, Rumph ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 5, 368. |
[13] | Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669-678. |
[14] | Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du DL (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Frontiers in Plant Science, 7, 706. |
[15] | Dai ZC, Qi SS, Miao SL, Liu YT, Tian YF, Zhai DL, Ping H, Du DL (2015) Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. Biochemical Systematics and Ecology, 61, 19-27. |
[16] | Denison RF (2004) Lifestyle alternatives for rhizobia: mutual¬ism, parasitism, and forgoing symbiosis. FEMS Microbiol¬ogy Letters, 237, 187-193. |
[17] | Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 31, 861-864. |
[18] | Eisenhauer N, Hörsch V, Moeser J, Scheu S (2010) Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology, 11, 23-34. |
[19] | Elgersma KJ, Yu S, Vor T, Ehrenfeld JG (2012) Microbial-mediated feedbacks of leaf litter on invasive plant growth and interspecific competition. Plant and Soil, 356, 341-355. |
[20] | Eppinga MB, Rietkerk M, Dekker SC, Ruiter PCD, van der Putten WH (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168-176. |
[21] | Geldner N, Salt DE (2014) Focus on roots. Plant Physiology, 166, 453-454. |
[22] | Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology, 40, 13-43. |
[23] | Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own number supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402. |
[24] | Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321, 5-33. |
[25] | Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[26] | Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014) Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609. |
[27] | Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology, 38, 67-77. |
[28] | Lankau RA (2012) Coevolution between invasive and native plants driven by chemical competition. Proceedings of the National Academy of Sciences, USA, 109, 11240-11245. |
[29] | Laungani R, Knops JMH (2009) Species-driven changes in nitrogen cycling can provide a mechanism for plant inva¬sions. Proceedings of the National Academy of Sciences, USA, 106, 12400-12405. |
[30] | Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist, 168, 189-204. |
[31] | Li H, Zhang X, Zheng R, Li X, Elmer WH, Wolfe LM, Li B (2014) Indirect effects of non-native Spartina alterniflora and its fungal pathogen (Fusarium palustre) on native salt¬marsh plants in China. Journal of Ecology, 102, 1112-1119. |
[32] | Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. ISSG, SSC and IUCN. www.issg.org/pdf/publications/worst_100/english_100_worst.pdf |
[33] | Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. |
[34] | Mangla S, Inderjit, Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology, 96, 58-67. |
[35] | Margulis L (1993) Origins of species: acquired genomes and individuality. Biosystems, 31, 121-125. |
[36] | Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 80, 1180-1186. |
[37] | Mauchline TH, Chedom-Fotso D, Chandra G, Samuels T, Greenaway N, Backhaus A, McMillan V, Canning G, Pow¬ers SJ, Hammond-Kosack KE, Hirsch PR, Clark IM, Mehrabi Z, Roworth J, Burnell J, Malone JG (2015) An analy¬sis of Pseudomonas genomic diversity in take-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environmental Microbiology, 17, 4764-4778. |
[38] | McFall-Ngai M (2008) Are biologists in “future shock”? Sym¬biosis integrates biology across domains. Nature Reviews Microbiology, 6, 789-792. |
[39] | Mcleod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM, Aerts R (2016) Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grass¬lands. Journal of Ecology, 104, 994-1002. |
[40] | Mendes R, Kruijt M, de Bruijin I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, Desantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100. |
[41] | Mincheva T, Barni E, Varese GC, Brusa G, Cerabolini B, Siniscalco C (2014) Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation. Acta Oecologica, 54, 29-35. |
[42] | Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature, 421, 625-627. |
[43] | Nijjer S, Rogers WE, Siemann E (2007) Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens. Proceedings of the Royal Society B: Biological Sciences, 274, 2621-2627. |
[44] | Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16, 2157-2167. |
[45] | Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant inva¬sions. Annual Review of Ecology, Evolution & Systematics, 40, 699-715. |
[46] | Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745. |
[47] | Reinholdhurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annual Review of Phytopathology, 53, 403-424. |
[48] | Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316-331. |
[49] | Rosenblueth M, Martínez RE (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe In¬teractions, 132, 827-837. |
[50] | Rout ME, Callaway RM (2009) An invasive plant paradox. Science, 324, 734-735. |
[51] | Rout ME, Callaway RM (2012) Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘Everything is not everywhere’. Annals of Botany, 110, 213-222. |
[52] | Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 100, 1726-1737. |
[53] | Setälä H, Mclean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil sapro¬phytic fungi. Oecologia, 139, 98-107. |
[54] | Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, e140. |
[55] | Sun ZK, He WM (2010) Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE, 5, e15418. |
[56] | Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273. |
[57] | van der Putten WH, Klironomos JN, Wardle DA (2007a) Microbial ecology of biological invasions. The ISME Journal, 1, 28-37. |
[58] | van der Putten WH, Kowalchuk GA, Brinkman EP, Doodeman GTA, van der Kaaij RM, Kamp AFD, Menting FBJ, Veenendaal EM (2007b) Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology, 88, 978-988. |
[59] | Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic inasive plants in Belgium. Plant and Soil, 275, 169-179. |
[60] | van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant im¬mune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443-448. |
[61] | Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90, 399-407. |
[62] | Waller LP, Callaway RM, Klironomos JN, Ortega YK, Maron JL (2016) Reduced mycorrhizal responsiveness leads to in¬creased competitive tolerance in an invasive exotic plant. Journal of Ecology, 104, 1599-1607. |
[63] | Wardle DA (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. |
[64] | Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Envi¬ronmental Microbiology, 8, 2162-2169. |
[65] | Xu J, Wang W, Sun J, Zhang Y, Ge Q, Du L, Yin H, Liu X (2011) Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant and Soil, 346, 107-119. |
[66] | Yang HS, Zhang Q, Koide RT, Hoeksema JD, Tang JJ, Bian XM, Hu SJ, Chen X (2017) Taxonomic resolution is a de¬terminant of biodiversity effects in arbuscular mycorrhizal fungal communities. Journal of Ecology, 105, 219-228. |
[67] | Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, Ga¬bler CA, Li B, Siemann E (2013) Plant-soil biota interac¬tions of an invasive species in its native and introduced ranges: implications for invasion success. Soil Biology and Biochemistry, 65, 78-85. |
[1] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[2] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[3] | 肖俞, 李宇然, 段禾祥, 任正涛, 冯圣碧, 姜志诚, 李家华, 张品, 胡金明, 耿宇鹏. 高黎贡山外来植物入侵现状及管控建议[J]. 生物多样性, 2023, 31(5): 23011-. |
[4] | 孙尧初, 潘远飞, 刘木, 潘晓云. 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略[J]. 生物多样性, 2023, 31(4): 22632-. |
[5] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[6] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[7] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[8] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[9] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[10] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
[11] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[12] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[13] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[14] | 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较[J]. 生物多样性, 2021, 29(5): 596-604. |
[15] | 王亚, 王玮倩, 王钦克, 李晓霞, 刘延, 黄乔乔. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响[J]. 生物多样性, 2021, 29(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn