生物多样性 ›› 2017, Vol. 25 ›› Issue (4): 345-354. DOI: 10.17520/biods.2017034
储诚进1,*(), 王酉石1, 刘宇1, 蒋林2, 何芳良1,3
收稿日期:
2017-02-12
接受日期:
2017-04-01
出版日期:
2017-04-20
发布日期:
2017-04-20
通讯作者:
储诚进
基金资助:
Chengjin Chu1,*(), Youshi Wang1, Yu Liu1, Lin Jiang2, Fangliang He1,3
Received:
2017-02-12
Accepted:
2017-04-01
Online:
2017-04-20
Published:
2017-04-20
Contact:
Chu Chengjin
摘要:
群落内的多物种如何共存是群落生态学的核心研究内容之一。经典的物种共存理论强调物种之间的生态位分化, 注重具体共存机制的研究。这种以具体共存机制为研究对象的方法一定程度上促进了当代物种共存理论框架的形成。在当代物种共存理论框架下, 物种间的差异被划分为两类综合性的抽象差异——生态位差异和平均适合度差异, 前者促进物种共存, 对应稳定化机制; 后者导致竞争排除, 对应均等化机制。本文在简要回顾经典物种共存理论的基础上, 介绍了当代物种共存理论的框架(包括理论的形成和定义)、基于该理论的部分实验验证工作及其在一些重要生态学问题中的应用。当代物种共存理论不仅揭示了群落内物种是如何共存的这一基本理论问题, 更重要的是在全球变化的背景下该理论对生物多样性的保护和管理具有重要的应用价值。期望本文的介绍有助于国内生态学和生物多样性工作者了解当代物种共存理论, 并将其应用于群落构建和生物多样性维持机制等方面的研究。
储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354. DOI: 10.17520/biods.2017034.
Chengjin Chu, Youshi Wang, Yu Liu, Lin Jiang, Fangliang He (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. DOI: 10.17520/biods.2017034.
图1 当代物种共存理论框架。物种间差异分为生态位差异和平均适合度差异, 前者促进物种共存, 后者利于竞争排除。物种能否稳定共存取决于生态位差异和平均适合度差异的相对大小: 灰色区域, 生态位差异大于平均适合度差 异——稳定共存; 白色区域, 平均适合度差异大于生态位差异——竞争排除。生态位差异对应稳定化机制, 平均适合度差异对应均等化机制。
Fig. 1 The conceptual diagram of contemporary coexistence theory. Species differences are categorized into two groups: niche differences and average fitness differences. Niche differences maintain species stable coexistence, and average fitness differences drive competitive exclusion. For a given community, the balance between niche differences and average fitness differences determines the outcome of competition. In the gray region, niche differences are larger than average fitness differences, which results in stable coexistence. In the white region, average fitness differences are stronger than niche differences, which results in competitive exclusion. Niche differences correspond to stabilizing mechanisms, and average fitness differences correspond to equalizing mechanisms.
1 | Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145. |
2 | Adler PB, Dalgleish HJ, Ellner SP (2012) Forecasting plant community impacts of climate variability and change: when do competitive interactions matter? Journal of Ecology, 100, 478-487. |
3 | Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an embarrassment of niches. Ecology Letters, 13, 1019-1029. |
4 | Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306. |
5 | Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecology Letters, 10, 95-104. |
6 | Angert AL, LaDeau SL, Ostfeld RS (2013) Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 1297, 1-7. |
7 | Bell G (2001) Neutral macroecology. Science, 293, 2413-2418. |
8 | Carroll IT, Cardinale BJ, Nisbet RM (2011) Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology, 92, 1157-1165. |
9 | Chase JM, Leibold MA (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. |
10 | Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
11 | Chen L, Mi XC, Ma KP (2014) Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117. (in Chinese) |
[陈磊, 米湘成, 马克平 (2014) 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.] | |
12 | Chesson P (1985) Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theoretical Population Biology, 28, 263-287. |
13 | Chesson P (1994) Multispecies competition in variable environments. Theoretical Population Biology, 45, 227-276. |
14 | Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. |
15 | Chesson P (2013) Species competition and predation. In: Encyclopedia of Sustainability Science and Technology (ed. Meyers RA), pp. 223-256. Springer-Verlag, New York. |
16 | Chu CJ, Bartlett M, Wang YS, He FL, Weiner J, Chave J, Sack L (2016) Does climate directly influence NPP globally? Global Change Biology, 22, 12-24. |
17 | Chu CJ, Adler PB (2015) Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs, 85, 373-392. |
18 | Chu CJ, Havstad KM, Kaplan N, Lauenroth WK, McClaran MP, Peters DP, Vermeire LT, Adler PB (2014) Life form influences survivorship patterns for 109 herbaceous perennials from six semi-arid ecosystems. Journal of Vegetation Science, 25, 947-954. |
19 | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds den Boer PJ, Gradwell G), pp. 298-312. Pudoc, Oosterbeek. |
20 | Elton C (1927) Animal Ecology. Sidgwick and Jackson, London. |
21 | Funk JL, Wolf AA (2016) Testing the trait-based community framework: do functional traits predict competitive outcomes? Ecology, 97, 2206-2211. |
22 | Gause GF (1934) The Struggle of Existence. Williams & Wilkins, Baltimore. |
23 | Germain RM, Weir JT, Gilbert B (2016) Species coexistence: macroevolutionary relationships and the contingency of historical interactions. Proceedings of the Royal Society B: Biological Sciences, 283, 20160047. |
24 | Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325-331. |
25 | Godoy O, Kraft NJB, Levine JM (2014) Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 17, 836-844. |
26 | Godoy O, Levine JM (2014) Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology, 95, 726-736. |
27 | Grinnell J (1917) The niche-relationships of the California thrasher. Auk, 34, 427-433. |
28 | Gross N, Liancourt P, Butters R, Duncan RP, Hulme PE (2015) Functional equivalence, competitive hierarchy and facilitation determine species coexistence in highly invaded grasslands. New Phytologist, 206, 175-186. |
29 | Hardin G (1960) The competitive exclusion principle. Science, 131, 1292-1297. |
30 | Harms K, Wright S, Calderon O, Hernandez A, Herre E (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495. |
31 | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology and Systematics, 43, 227-248. |
32 | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
33 | Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. |
34 | Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
35 | Kleinhesselink AR, Adler PB (2015) Indirect effects of environmental change in resource competition models. The American Naturalist, 186, 766-776. |
36 | Kraft NJB, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, USA, 112, 797-802. |
37 | Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 15, 831-840. |
38 | Lawton JH (1999) Are there general laws in ecology? Oikos, 84, 177-192. |
39 | Leibold MA (1995) The niche concept revisited: mechanistic models and community context. Ecology, 76, 1371-1382. |
40 | Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177. |
41 | Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature, 461, 254-257. |
42 | Lewin R (1983) Santa Rosalia was a goat. Science, 221, 636-639. |
43 | Lotka AJ (1925) Elements of Physical Biology. Williams & Wilkins Company, Baltimore. |
44 | MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology, 39, 599-619. |
45 | MacArthur RH(1969) The theory of the niche. In: Population Biology and Evolution (ed. Lewontin RC), pp. 159-176. Syracuse University Press, Syracuse. |
46 | MacArthur RH(1972) Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press, Princeton. |
47 | MacArthur RH, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
48 | May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Science, USA, 69, 1109-1113. |
49 | Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093. |
50 | Narwani A, Alexandrou MA, Oakley TH, Carroll IT, Cardinale BJ (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 16, 1373-1381. |
51 | Newman EI (1973) Competition and diversity in herbaceous vegetation. Nature, 244, 310. |
52 | Niu HY, Wang ZF, Lian JY, Ye WH, Shen H (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science, 19, 275-283. (in Chinese with English abstract) |
[牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩 (2011) 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性, 19, 275-283.] | |
53 | Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract) |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
54 | Ostling A (2012) Do fitness-equalizing tradeoffs lead to neutral communities? Theoretical Ecology, 5, 181-194. |
55 | Siepielski AM, McPeek MA (2010) On the evidence for species coexistence: a critique of the coexistence program. Ecology, 91, 3153-3164. |
56 | Simberloff D, Boecklen W (1981) Santa Rosalia reconsidered: size ratios and competition. Evolution, 35, 1206-1228. |
57 | Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115-1123. |
58 | Strong DR, Szyska LA, Simberloff D (1979) Tests of community-wide character displacement against null hypotheses. Evolution, 33, 897-913. |
59 | Tilman D (1980) Resource: a graphical-mechanistic approach to competition and predation. The American Naturalist, 116, 362-393. |
60 | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
61 | Turnbull LA, Rees M, Purves DW (2008) Why equalising trade-offs aren’t always neutral? Ecology Letters, 11, 1037-1046. |
62 | Vellend BM (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206. |
63 | Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton and Oxford. |
64 | Volterra V (1926) Variations and fluctuations of the number of individuals in animal species living together. In: Animal Ecology (ed. Chapman RN) (Reprinted in 1931). McGraw Hill, New York. |
65 | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
66 | Zhao L, Zhang QG, Zhang DY (2016) Evolution alters ecological mechanisms of coexistence in experimental microcosms. Functional Ecology, 30, 1440-1446. |
67 | Zhou SR, Zhang DY (2006) Neutral theory in community ecology. Journal of Plant Ecology (Chinese Version), 30, 868-877. (in Chinese with English abstract) |
[周淑荣, 张大勇 (2006) 群落生态学的中性理论. 植物生态学报, 30, 868-877.] | |
68 | Zhu BR, Zhang DY (2011) A process-based theoretical framework for community ecology. Biodiversity Science, 19, 389-399. (in Chinese with English abstract) |
[朱璧如, 张大勇 (2011) 基于过程的群落生态学理论框架. 生物多样性, 19, 389-339.] |
[1] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[2] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[3] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[4] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[5] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[6] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[7] | 彭步青, 陶玲, 李靖, 范荣辉, 陈顺德, 付长坤, 王琼, 唐刻意. 基于DNA宏条形码研究四川老君山国家级自然保护区6种同域共存小型哺乳动物的食性[J]. 生物多样性, 2023, 31(4): 22474-. |
[8] | 付树森, 宋普庆, 李渊, 李袁源, 张然, 张琥顺, 王芮, 林龙山. 白令海与楚科奇海鱼类营养级与营养生态位[J]. 生物多样性, 2023, 31(4): 22521-. |
[9] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[10] | 李婷婷, 朱锡红, 吴光年, 宋虓, 徐爱春. 镇海棘螈产卵场微生境选择[J]. 生物多样性, 2023, 31(1): 22293-. |
[11] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[12] | 李治霖, 王天明. 亚洲同域分布虎和豹竞争与共存关系概述[J]. 生物多样性, 2022, 30(9): 22271-. |
[13] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[14] | 周天祥, 杨华林, 张贵权, 杨建, 冯茜, 胡强, 程跃红, 张晋东, 王彬, 周材权. 四川卧龙国家级自然保护区三种高山同域鸡形目鸟类的时空生态位比较[J]. 生物多样性, 2022, 30(6): 22026-. |
[15] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn