生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22293. DOI: 10.17520/biods.2022293
李婷婷1, 朱锡红1, 吴光年2, 宋虓1,*(), 徐爱春1,*()
收稿日期:
2022-06-01
接受日期:
2022-11-01
出版日期:
2023-01-20
发布日期:
2022-12-30
通讯作者:
*宋虓, E-mail: xsong@cjlu.edu.cn;徐爱春, springlover@cjlu.edu.cn
基金资助:
Tingting Li1, Xihong Zhu1, Guangnian Wu2, Xiao Song1,*(), Aichun Xu1,*()
Received:
2022-06-01
Accepted:
2022-11-01
Online:
2023-01-20
Published:
2022-12-30
Contact:
*Xiao Song, E-mail: xsong@cjlu.edu.cn;Aichun Xu, springlover@cjlu.edu.cn
摘要:
镇海棘螈(Echinotriton chinhaiensis)为国家一级重点保护野生动物, 其种群面临着生境退化及丧失的重要威胁。产卵是决定镇海棘螈种群数量增长的关键环节之一, 了解其产卵选择的微生境偏好可以更有针对性地保护该物种。本研究旨在确定影响镇海棘螈产卵场微生境选择的关键环境变量, 同时为该物种的产卵生境保护、改造和重建提供科学基础。本文于2021年3‒5月(繁殖期)在浙江省宁波市北仑区林场对镇海棘螈产卵位点(n = 105)与非产卵位点(n = 70)处的18个微生境变量进行调查。采用拟合优度卡方检验判断3种无序分类变量的差异性, 并利用生境喜好系数对生境选择性进行分析。采用二元逻辑斯蒂回归模型对15个数值型变量进行分析, 确定影响镇海棘螈产卵微生境选择的关键变量。结果显示镇海棘螈繁殖期间对产卵场微生境有明显偏好,通常产卵于朝向水坑、落叶层较厚(5.19 ± 0.18 cm)、坡度较陡(18.64° ± 1.18°)和土壤含水量较低(33.51% ± 1.87%)的土壤基质上。此外, 在大型遮蔽物中, 镇海棘螈偏好选择体积较小的石块和乔木(2,994.63 ± 316.17 cm3)作为遮蔽且离遮蔽物较近(54.27 ± 3.84 cm)的生境产卵。直接的遮蔽物——落叶层和大型遮蔽物(石块和乔木)的体积均在镇海棘螈产卵选择上起着最重要的作用, 其次为到最近大型遮蔽物的距离。镇海棘螈在选择产卵微生境时, 需要同时兼顾遮蔽物特性、水源条件、微气候环境等多个方面的需求, 遮蔽条件是决定镇海棘螈产卵场选择的关键因子。建议对产卵场周边落叶阔叶林进行重点保护。
李婷婷, 朱锡红, 吴光年, 宋虓, 徐爱春 (2023) 镇海棘螈产卵场微生境选择. 生物多样性, 31, 22293. DOI: 10.17520/biods.2022293.
Tingting Li, Xihong Zhu, Guangnian Wu, Xiao Song, Aichun Xu (2023) Spawning ground microhabitat selection by the Chinhai spiny newt (Echinotriton chinhaiensis). Biodiversity Science, 31, 22293. DOI: 10.17520/biods.2022293.
图1 本研究的调查区域示意图(a)、镇海棘螈保护区(b)、位于镇海棘螈保护区内的繁殖水坑(c)、一尾雌性镇海棘螈成体和卵(d)。摄影者: 钱科(b, c)、赵锷(d)。
Fig. 1 Sketch map of this study to be investigated (a); The Chinhai spiny newt Nature Reserve (b); A breeding puddle in the Chinhai spiny newt Nature Reserve (c); E. chinhaiensis (a female adult) with its eggs (d). Photographer: Qian Ke (b, c), Zhao E (d).
环境变量 Environmental variables | 类别 Type | 选择样方数 Utilized plot number (o) | 期望值 Expected value (e) | 生境喜好系数 Habitat preference index (HPI) |
---|---|---|---|---|
位点方向 Aspect | 正向 Positive | 103 | 52.5 | 0.9 (F) |
反向 Reverse | 2 | 52.5 | ± 0.9 (E) | |
基质 Matrix | 砾石 Gravel | 7 | 35.0 | ± 0.6 (E) |
砾石 + 土壤 Gravel + soil | 26 | 35.0 | 0 (RS) | |
土壤 Soil | 72 | 35.0 | 0.5 (F) | |
大型遮蔽物种类 Type of large shelter | 倒木 Fallen trees | 3 | 21 | ± 0.8 (E) |
乔木 Trees | 47 | 21 | 0.4 (S) | |
石块 Stones | 47 | 21 | 0.4 (S) | |
树根 Roots | 4 | 21 | ± 0.7 (E) | |
藤本 Vines | 4 | 21 | ± 0.7 (E) |
表1 镇海棘螈繁殖期间对产卵场微环境的选择和偏好
Table 1 Selection and preference of spawning sites of Echinotriton chinhaiensis during the breeding period
环境变量 Environmental variables | 类别 Type | 选择样方数 Utilized plot number (o) | 期望值 Expected value (e) | 生境喜好系数 Habitat preference index (HPI) |
---|---|---|---|---|
位点方向 Aspect | 正向 Positive | 103 | 52.5 | 0.9 (F) |
反向 Reverse | 2 | 52.5 | ± 0.9 (E) | |
基质 Matrix | 砾石 Gravel | 7 | 35.0 | ± 0.6 (E) |
砾石 + 土壤 Gravel + soil | 26 | 35.0 | 0 (RS) | |
土壤 Soil | 72 | 35.0 | 0.5 (F) | |
大型遮蔽物种类 Type of large shelter | 倒木 Fallen trees | 3 | 21 | ± 0.8 (E) |
乔木 Trees | 47 | 21 | 0.4 (S) | |
石块 Stones | 47 | 21 | 0.4 (S) | |
树根 Roots | 4 | 21 | ± 0.7 (E) | |
藤本 Vines | 4 | 21 | ± 0.7 (E) |
变量 Variables | 选择样方 Utilized plots ( n =105) | 对照样方 Control plots ( n = 70) | T | Z | P |
---|---|---|---|---|---|
地表温度 Ground surface temperature (℃) | 20.06 ± 0.26 | 21.80 ± 0.32 | 4.781 | 0.000 | |
地表湿度 Ground surface moisture (%) | 57.04 ± 1.45 | 69.30 ± 1.31 | 5.294 | 0.000 | |
空气温度 Air temperature (℃) | 20.19 ± 0.31 | 22.11 ± 0.47 | 4.792 | 0.000 | |
空气湿度 Air moisture (%) | 53.92 ± 1.55 | 65.77 ± 1.42 | 4.380 | 0.000 | |
土壤pH值 Soil pH | 6.48 ± 0.04 | 6.51 ± 0.04 | 0.385 | 0.700 | |
土壤含水量 Soil moisture content (%) | 33.51 ± 1.87 | 40.30 ± 2.41 | 2.082 | 0.037 | |
光照度 Sun radiation intensity (lux) | 1,218.75 ± 131.75 | 1,524.56 ± 211.04 | 2.709 | 0.007 | |
坡度 Slope (°) | 18.64 ± 1.18 | 14.85 ± 1.61 | 2.793 | 0.005 | |
落叶层厚度 Leaf litter depth (cm) | 5.19 ± 0.18 | 3.21 ± 0.26 | 6.445 | 0.000 | |
到岸边距离 Distance to shore (cm) | 168.57 ± 11.93 | 206.45 ± 16.27 | 1.905 | 0.057 | |
植物数量 Plant number | 2.800 ± 0.29 | 3.59 ± 0.35 | 2.028 | 0.043 | |
植物高度 Plant height (cm) | 8.99 ± 0.76 | 7.25 ± 0.79 | 1.829 | 0.067 | |
植物盖度 Plant coverage (%) | 31.21 ± 2.98 | 39.23 ± 4.30 | -1.364 | 0.173 | |
到最近大型遮蔽物的距离 Distance to the nearest large shelter (cm) | 54.27 ± 3.84 | 90.60 ± 9.26 | 2.741 | 0.006 | |
大型遮蔽物的体积 Volume of large shelter (cm3) | 2,994.63 ± 316.17 | 5,661.81 ± 987.35 | 2.551 | 0.011 |
表2 镇海棘螈繁殖期间选择样方和对照样方环境变量的比较
Table 2 Comparison of environmental variables between the utilized plots and control plots during the breeding period of Echinotriton chinhaiensis
变量 Variables | 选择样方 Utilized plots ( n =105) | 对照样方 Control plots ( n = 70) | T | Z | P |
---|---|---|---|---|---|
地表温度 Ground surface temperature (℃) | 20.06 ± 0.26 | 21.80 ± 0.32 | 4.781 | 0.000 | |
地表湿度 Ground surface moisture (%) | 57.04 ± 1.45 | 69.30 ± 1.31 | 5.294 | 0.000 | |
空气温度 Air temperature (℃) | 20.19 ± 0.31 | 22.11 ± 0.47 | 4.792 | 0.000 | |
空气湿度 Air moisture (%) | 53.92 ± 1.55 | 65.77 ± 1.42 | 4.380 | 0.000 | |
土壤pH值 Soil pH | 6.48 ± 0.04 | 6.51 ± 0.04 | 0.385 | 0.700 | |
土壤含水量 Soil moisture content (%) | 33.51 ± 1.87 | 40.30 ± 2.41 | 2.082 | 0.037 | |
光照度 Sun radiation intensity (lux) | 1,218.75 ± 131.75 | 1,524.56 ± 211.04 | 2.709 | 0.007 | |
坡度 Slope (°) | 18.64 ± 1.18 | 14.85 ± 1.61 | 2.793 | 0.005 | |
落叶层厚度 Leaf litter depth (cm) | 5.19 ± 0.18 | 3.21 ± 0.26 | 6.445 | 0.000 | |
到岸边距离 Distance to shore (cm) | 168.57 ± 11.93 | 206.45 ± 16.27 | 1.905 | 0.057 | |
植物数量 Plant number | 2.800 ± 0.29 | 3.59 ± 0.35 | 2.028 | 0.043 | |
植物高度 Plant height (cm) | 8.99 ± 0.76 | 7.25 ± 0.79 | 1.829 | 0.067 | |
植物盖度 Plant coverage (%) | 31.21 ± 2.98 | 39.23 ± 4.30 | -1.364 | 0.173 | |
到最近大型遮蔽物的距离 Distance to the nearest large shelter (cm) | 54.27 ± 3.84 | 90.60 ± 9.26 | 2.741 | 0.006 | |
大型遮蔽物的体积 Volume of large shelter (cm3) | 2,994.63 ± 316.17 | 5,661.81 ± 987.35 | 2.551 | 0.011 |
模型 Model | AICc | ΔAICc | wib | wic | Kd |
---|---|---|---|---|---|
到最近大型遮蔽物的距离, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 174.66 | 0.00 | 0.26 | 0.65 | 5 |
到最近大型遮蔽物的距离, 光照度, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 175.91 | 1.25 | 0.14 | 0.35 | 6 |
到岸边的距离, 到最近大型遮蔽物的距离, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 176.70 | 2.04 | 0.09 | - | 6 |
表3 2021年镇海棘螈繁殖期间生境变量与选择/不选择该生境的二元逻辑斯蒂回归模型的预测(仅展示前3个AICc数值低的模型)
Table 3 Candidate models constructed from a paired logistic regression of microhabitat variables against presence-absence of utilized/control plots of Echinotriton chinhaiensis during the 2021 breeding season (Only the first three models with low AICc values are shown)
模型 Model | AICc | ΔAICc | wib | wic | Kd |
---|---|---|---|---|---|
到最近大型遮蔽物的距离, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 174.66 | 0.00 | 0.26 | 0.65 | 5 |
到最近大型遮蔽物的距离, 光照度, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 175.91 | 1.25 | 0.14 | 0.35 | 6 |
到岸边的距离, 到最近大型遮蔽物的距离, 落叶层厚度, 坡度, 土壤含水量, 大型遮蔽物体积 | 176.70 | 2.04 | 0.09 | - | 6 |
预测值 Estimate | 标准误 SE | 调整后标准误 Adjusted SE | Z | P | |
---|---|---|---|---|---|
截距 Intercept | 0.606 | 0.205 | 0.207 | 2.927 | 0.003 |
到最近大型遮蔽物的距离 | -0.619 | 0.221 | 0.223 | 2.779 | 0.005 |
落叶层厚度 | 1.373 | 0.272 | 0.274 | 5.013 | 0.000 |
坡度 | 0.475 | 0.212 | 0.214 | 2.224 | 0.026 |
土壤含水量 | -0.514 | 0.197 | 0.191 | 2.588 | 0.010 |
大型遮蔽物体积 | -0.860 | 0.310 | 0.312 | 2.756 | 0.006 |
光照度 | -0.069 | 0.156 | 0.157 | 0.440 | 0.660 |
表4 ΔAICc < 2的所有模型进行模型平均后得到的最佳模型的参数值
Table 4 Parameter values of the best model obtained from model averaging for all possible models with ΔAICc < 2
预测值 Estimate | 标准误 SE | 调整后标准误 Adjusted SE | Z | P | |
---|---|---|---|---|---|
截距 Intercept | 0.606 | 0.205 | 0.207 | 2.927 | 0.003 |
到最近大型遮蔽物的距离 | -0.619 | 0.221 | 0.223 | 2.779 | 0.005 |
落叶层厚度 | 1.373 | 0.272 | 0.274 | 5.013 | 0.000 |
坡度 | 0.475 | 0.212 | 0.214 | 2.224 | 0.026 |
土壤含水量 | -0.514 | 0.197 | 0.191 | 2.588 | 0.010 |
大型遮蔽物体积 | -0.860 | 0.310 | 0.312 | 2.756 | 0.006 |
光照度 | -0.069 | 0.156 | 0.157 | 0.440 | 0.660 |
[1] | Bartoń K (2020) MuMIn: Multi-Model Inference, Version 1.43.17. https://CRAN.R-project.org/packages=MuMIn. (accessed on 2022-07-03) |
[2] |
Belasen AM, Amses KR, Clemons RA, Becker CG, Toledo LF, James TY (2022) Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics, 74, 431-441.
DOI URL |
[3] |
Ben Hassine J, Escoriza D, Bakhouche B (2016) Factors determining the occurrence of Pleurodeles poireti (Caudata: Salamandridae) on Edough Peninsula, northeastern Algeria. African Journal of Herpetology, 65, 55-67.
DOI URL |
[4] |
Blomquist SM, Hunter ML (2010) A multi-scale assessment of amphibian habitat selection: Wood frog response to timber harvesting. Écoscience, 17, 251-264.
DOI URL |
[5] |
Caissie D (2006) The thermal regime of rivers: A review. Freshwater Biology, 51, 1389-1406.
DOI URL |
[6] | Calcagno V (2020) glmulti: Model Selection and Multimodel Inference Made Easy, Version 1.0.8. https://CRAN.R-project.org/package=glmulti. (assessed on 2022-07-03) |
[7] | Chen GY, Liu JY, Jiang JP, Xie F, Li W (2013) Seasonal population dynamics of environment microorganisms in the typical habitats of Odorrana grahami. Journal of Sichuan Normal University (Natural Science), 36, 759-763. (in Chinese with English abstract) |
[陈贵英, 刘炯宇, 江建平, 谢锋, 李维 (2013) 无指盘臭蛙(Odorrana grahami)典型栖息地环境微生物季节变化. 四川师范大学学报(自然科学版), 36, 759-763.] | |
[8] |
Cobos M, Bosch RA (2016) Recent and future threats to the Endangered Cuban toad Peltophryne longinasus: Potential additive impacts of climate change and habitat loss. Oryx, 52, 116-125.
DOI URL |
[9] | Dong GC, Wang CS, Dong SL, Tian XL, Wang F, Leng CM (2014) Progress of studies on effects of shelter on behavior of marine echinoderms. Transactions of Oceanology and Limnology, (3), 58-62. (in Chinese with English abstract) |
[董贯仓, 王春生, 董双林, 田相利, 王芳, 冷春梅 (2014) 遮蔽物对棘皮动物影响的行为生态学研究进展. 海洋湖沼通报, (3), 58-62.] | |
[10] |
Downes BJ, Peckarsky BL, Lancaster J, Bovill WD, Alp M (2021) From insects to frogs, egg-juvenile recruitment can have persistent effects on population sizes. Annual Review of Ecology, Evolution, and Systematics, 52, 67-86.
DOI URL |
[11] |
Edwards WM, Griffiths RA, Bungard MJ, Rakotondrasoa EF, Razafimanahaka JH, Razafindraibe P, Andriantsimanarilafy RR, Randrianantoandro JC (2019) Microhabitat preference of the critically endangered golden Mantella frog in Madagascar. Herpetological Journal, 29, 207-213.
DOI |
[12] | Fang H, Chen YM, Zhao WY, Huang C (2019) Effect of shelters on red swamp crayfish Procambarus clarkii at different growth stages. Fisheries Science, 38, 533-538. (in Chinese with English abstract) |
[方卉, 陈友明, 赵雯莹, 黄成 (2019) 隐蔽所对不同生长阶段克氏原螯虾生长的影响. 水产科学, 38, 533-538.] | |
[13] |
Farquharson C, Wepener V, Smit NJ (2016) Acute and chronic effects of acidic pH on four subtropical frog species. Water SA, 42, 52-62.
DOI URL |
[14] | Fei L (1992) Echinotriton chinhaiensis and its endangered status. Chinese Journal of Zoology, 27(4), 39-41. (in Chinese) |
[费梁 (1992) 镇海棘螈及濒危现状. 动物学杂志, 27(4), 39-41.] | |
[15] | Feng J, Zhang JH, Shu YL, Yao L, Tang XS, Wu HL (2015) The geographic distribution pattern and habitat selection of the Chinese concave-eared torrent frog in southern Anhui Province. Acta Ecologica Sinica, 35, 5638-5647. (in Chinese with English abstract) |
[冯骏, 张继辉, 疏义林, 姚龙, 唐鑫生, 吴海龙 (2015) 皖南凹耳臭蛙地理分布格局与生境选择. 生态学报, 35, 5638-5647.] | |
[16] |
Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—The American bullfrog. Diversity and Distributions, 13, 476-485.
DOI URL |
[17] |
Forsythe PS, Wyatt DS, Switzer PV (2003) Effects of experience and body size on refuge choice in the crayfish Orconectes immunis. Journal of Freshwater Ecology, 18, 305-313.
DOI URL |
[18] |
Gall BG, Brodie EDI, Brodie ED Jr (2012) Fine-scale selection by ovipositing females increases egg survival. Ecology and Evolution, 2, 2763-2774.
DOI PMID |
[19] | Homan RN, Atwood MA, Dunkle AJ, Karr SB (2010) Movement orientation by adult and juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) over multiple years. Herpetological Conservation and Biology, 5, 64-72. |
[20] |
Hopkins GR, Brodie ED (2015) Occurrence of amphibians in saline habitats: A review and evolutionary perspective. Herpetological Monographs, 29, 1-27.
DOI URL |
[21] | Huang HY, Bu RP, Xie H, Hou SB, Wu ZJ (2019) Habitat selection by Hynobius maoershanensis during its breeding period. Acta Ecologica Sinica, 39, 6443-6451. (in Chinese with English abstract) |
[黄华苑, 卜荣平, 谢海, 侯绍兵, 武正军 (2019) 猫儿山小鲵(Hynobius maoershanensis)繁殖期生境选择. 生态学报, 39, 6443-6451.] | |
[22] | Huang K, Mu ZQ, Yue Q, Yu F, Yuan X, Bo SQ, Wang ZH (2018) Microhabitat utilization of anuran species in Shanghai country parks. Sichuan Journal of Zoology, 37, 426-434. (in Chinese with English abstract) |
[黄凯, 慕志强, 岳衢, 于峰, 袁晓, 薄顺奇, 王正寰 (2018) 上海郊野公园无尾两栖动物微生境利用特征研究. 四川动物, 37, 426-434.] | |
[23] |
Jiang JP, Xie F, Zang CX, Cai L, Li C, Wang B, Li JT, Wang J, Hu JH, Wang Y, Liu JY (2016) Assessing the threat status of amphibians in China. Biodiversity Science, 24, 588-597. (in Chinese with English abstract)
DOI |
[江建平, 谢锋, 臧春鑫, 蔡蕾, 李成, 王斌, 李家堂, 王杰, 胡军华, 王燕, 刘炯宇 (2016) 中国两栖动物受威胁现状评估. 生物多样性, 24, 588-597.]
DOI |
|
[24] |
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature, 451, 990-993.
DOI URL |
[25] |
Jung JH, Lee EJ, Lee WS, Park CD (2019) Habitat suitability models of Korean crevice salamander (Karsenia koreana) at forested area in Daejeon metropolitan city, Republic of Korea. Journal of Forest Research, 24, 349-355.
DOI URL |
[26] |
Kell SJ, Rollinson N, Brooks RJ, Litzgus JD (2022) Nesting in close quarters: Causes and benefits of high-density nesting behaviour in Painted Turtles (Chrysemys picta). Canadian Journal of Zoology, 100, 208-218.
DOI URL |
[27] |
Kern MM, Nassar AA, Guzy JC, Dorcas ME (2013) Oviposition site selection by spotted salamander (Ambystoma maculatum) in an isolated wetland. Journal of Herpetology, 47, 445-449.
DOI URL |
[28] |
Kim HW, Adhikari P, Chang MH, Seo C (2021) Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals, 11, 2185.
DOI URL |
[29] |
Kraus F (2015) Impacts from invasive reptiles and amphibians. Annual Review of Ecology, Evolution, and Systematics, 46, 75-97.
DOI URL |
[30] |
Lechowicz MJ (1982) The sampling characteristics of electivity indices. Oecologia, 52, 22-30.
DOI PMID |
[31] | Li SS, Wang Y, Shao C, Pan TZ (2014) Post-breeding habitat characteristics and habitat selection of tiger frog (Hoplobatrachus chinensis). Chinese Journal of Ecology, 33, 3018-3025. (in Chinese with English abstract) |
[李世森, 王宇, 邵晨, 潘太仲 (2014) 虎纹蛙(Hoplobatra chuschinensis)繁殖后期的生境特征及生境选择. 生态学杂志, 33, 3018-3025.] | |
[32] |
Liu GH, Cui JG, Wang Y, Wang HL, Xiang B, Xiao NW (2022) Amphibian diversity and its spatio-temporal distribution patterns in Kangding City, Sichuan Province. Biodiversity Science, 30, 21494. (in Chinese with English abstract)
DOI |
[刘高慧, 崔建国, 王玥, 王洪良, 香宝, 肖能文 (2022) 四川省康定市两栖动物多样性及其时空分布格局. 生物多样性, 30, 21494.]
DOI |
|
[33] |
Liu X, Guo YS, Luo Y, Li YM (2016) Emergent vegetation coverage and human activities influence oviposition microhabitat selection by invasive bullfrogs (Lithobates catesbeianus) in Southwestern China. Journal of Herpetology, 50, 57-62.
DOI URL |
[34] | Liu X, Guo ZW, Ke ZW, Wang SP, Li YM (2011) Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PLoS ONE, 6, e18429. |
[35] | Liu X, Rohr JR, Li YM (2013) Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society B: Biological Sciences, 280, 20122506. |
[36] |
Liu X, Wang SP, Ke ZW, Cheng CY, Wang YH, Zhang F, Xu F, Li XP, Gao X, Jin CN, Zhu W, Yan SF, Li YM (2018) More invaders do not result in heavier impacts: The effects of non-native bullfrogs on native anurans are mitigated by high densities of non-native crayfish. Journal of Animal Ecology, 87, 850-862.
DOI PMID |
[37] | Liu Y, Liu XT (2009) Exploration of the endangered reasons of Echinotriton chinhaiensis and its protection suggestions. Bulletin of Biology, 44(1), 21-23, 63. (in Chinese) |
[刘毅, 刘信态 (2009) 镇海棘螈的濒危原因探索及其保护建议. 生物学通报, 44(1), 21-23, 63.] | |
[38] | Ma JZ (2004) Wildlife Management. Northeast Forestry University Press, Harbin. (in Chinese) |
[马建章 (2004) 野生动物管理学. 东北林业大学出版社, 哈尔滨.] | |
[39] |
Millikin AR, Woodley SK, Davis DR, Anderson JT (2019) Habitat characteristics in created vernal pools impact spotted salamander water-borne corticosterone levels. Wetlands, 39, 803-814.
DOI |
[40] | Palen WJ, Schindler DE (2010) Water clarity, maternal behavior, and physiology combine to eliminate UV radiation risk to amphibians in a montane landscape. Proceedings of the National Academy of Sciences, USA, 107, 9701-9706. |
[41] |
Pintar MR, Resetarits WJ Jr (2017) Relative predation risk and risk of desiccation co-determine oviposition preferences in Cope’s gray treefrog, Hyla chrysoscelis. Oecologia, 184, 423-430.
DOI URL |
[42] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2022-07-03) |
[43] |
Renaldo KA, Murch CW, Riley JN, Helleman B, Smith GR, Rettig JE (2011) Substrate preference of eastern red-backed salamanders, Plethodon cinereus: A comparison of deciduous and coniferous substrates. Amphibia-Reptilia, 32, 266-269.
DOI URL |
[44] | Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363, 1459-1463. |
[45] |
Smith GR, Schulte JJ (2008) Conservation management implications of substrate choice in recently metamorphosed American toads (Bufo americanus). Applied Herpetology, 5, 87-92.
DOI URL |
[46] | Sun RY (2006) Principles of Animal Ecology, 3rd edn. Beijing Normal University Press, Beijing. (in Chinese) |
[孙儒泳 (2006) 动物生态学原理(第三版). 北京师范大学出版社, 北京.] | |
[47] | Sun SJ, Dai Q, Dai ZX, Zhang HM, Gong RH, Du JF, Zou HS, Nie CA (2011) Population resource and habitat selection in summer of black knobby newt (Tylototriton asperrimus) in surrounding areas of Houhe National Nature Reserve, Hubei Province, China. Chinese Journal of Ecology, 30, 2534-2539. (in Chinese with English abstract) |
[孙守甲, 戴琦, 戴宗兴, 张洪茂, 龚仁虎, 杜建锋, 邹红山, 聂才爱 (2011) 后河自然保护区周边地区细痣疣螈资源及夏季生境选择. 生态学杂志, 30, 2534-2539.] | |
[48] | Tan MY, Sui LL, Zhang SMY, Liu ZS, Gao H, Teng LW, Zhang MR, Yan WB (2019) Habitat selection of desert lizard (Phrynocephalus przewalskii) in spring and autumn in Inner Mongolia Helan Mountain National Nature Reserve, China. Acta Ecologica Sinica, 39, 6889-6897. (in Chinese with English abstract) |
[谭孟雨, 隋璐璐, 张尚明玉, 刘振生, 高惠, 滕丽微, 张明睿, 颜文斌 (2019) 内蒙古贺兰山国家级自然保护区荒漠沙蜥春秋季生境选择. 生态学报, 39, 6889-6897.] | |
[49] | Van Hattem M, Bean WT, Belamaric P, Gamblin H, Scherbinski JJ, Olson J, Semerdjian A, Smith K, Widick I (2021) Foothill yellow-legged frog breeding biology in a semi-regulated river, Humboldt County, CA. California Fish and Game, 107, 205-220. |
[50] | Vignoli L, Silici R, Bissattini AM, Bologna MA (2012) Aspects of olfactory mediated orientation and communication in Salamandrina perspicillata (Amphibia Caudata): An experimental approach. Ethology Ecology & Evolution, 24, 165-173. |
[51] | Wang HY, Chai LH, Li XY, Zhang YH (2010) A statistical assessment of conservation status of 11 Chinese species of Amphibia (Caudata). Journal of Shaanxi Normal University (Natural Science Edition), 38(2), 73-75, 82. (in Chinese with English abstract) |
[王宏元, 柴丽红, 李忻怡, 张育辉 (2010) 中国11种有尾两栖动物生存状况的统计评估. 陕西师范大学学报(自然科学版), 38(2), 73-75, 82.] | |
[52] | Wang ZW, Lin JQ, Zhong GH, Sun L, Fang SG (2021) Terrestrial habitats in Changxing Chinese Alligator Nature Reserve of Zhejiang and their effects on the egg laying of the female alligators. Journal of Zhejiang University (Agriculture & Life Sciences), 47, 598-606. (in Chinese with English abstract) |
[王震伟, 林剑青, 钟国恒, 孙力, 方盛国 (2021) 浙江长兴扬子鳄自然保护区陆地生境及其对母鳄产卵的影响. 浙江大学学报(农业与生命科学版), 47, 598-606.] | |
[53] |
Weisrock DW, Papenfuss TJ, Macey JR, Litvinchuk SN, Polymeni R, Ugurtas IH, Zhao EM, Jowkar H, Larson A (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Molecular Phylogenetics and Evolution, 41, 368-383.
PMID |
[54] | Wen T, Xie F, Jiang JP, Zheng ZH (2005) Diversity conservation and common names of tailed amphibians in China. Reservoir Fisheries, 25(2), 64-66. (in Chinese) |
[温涛, 谢锋, 江建平, 郑中华 (2005) 中国有尾两栖动物的多样性保护及俗名探析. 水利渔业, 25(2), 64-66.] | |
[55] |
Wu YR, Si XF, Chen CW, Zeng D, Zhao YH, Li JQ, Ding P (2016) Effects of dispersal abilities on community dynamics of breeding birds on the land-bridge Islands in the Thousand Island Lake, China. Biodiversity Science, 24, 1135-1145. (in Chinese with English abstract)
DOI |
[吴奕如, 斯幸峰, 陈传武, 曾頔, 赵郁豪, 李家琦, 丁平 (2016) 千岛湖陆桥岛屿繁殖鸟类的扩散能力差异对群落动态的影响. 生物多样性, 24, 1135-1145.]
DOI |
|
[56] | Xia SS, Hu DM, Deng Y, Zhong X, Bai WK, Zhang JD, Wang B, Zhou CQ (2019) Habitat partitioning between sympatric Golden Pheasant and Temminck’s Tragopan at different spatial scales. Acta Ecologica Sinica, 39, 1627-1638. (in Chinese with English abstract) |
[夏珊珊, 胡大明, 邓玥, 钟雪, 白文科, 张晋东, 王彬, 周材权 (2019) 同域分布红腹锦鸡和红腹角雉在不同空间尺度下的生境分化. 生态学报, 39, 1627-1638.] | |
[57] | Xie F, Fei L, Li C, Ye CY (2001) The preliminary studies on the early development of the Chinhai salamander, Echinotriton chinhaiensis. Chinese Journal of Zoology, 36(4), 21-25. (in Chinese with English abstract) |
[谢锋, 费梁, 李成, 叶昌媛 (2001) 镇海棘螈早期个体发育研究. 动物学杂志, 36(4), 21-25.] | |
[58] | Xie F, Fei L, Ye CY, Wang ZW, Cai CM (2002) Oviposition sites and their effects on the reproductive success in the Chinhai salamander (Echinotriton chinhaiensis). Acta Zoologica Sinica, 48, 554-557. (in Chinese with English abstract) |
[谢锋, 费梁, 叶昌媛, 王祖望, 蔡春抹 (2002) 镇海棘螈产卵位点及其对繁殖成功率的影响. 动物学报, 48, 554-557.] | |
[59] | Xie F, Liu HN, Stuart SN, Chanson JS, Cox NA, Fischman DL (2006) An overview of China’s amphibian conservation needs. Science in China Ser. C: Life Sciences, 36, 570-581. (in Chinese) |
[谢锋, 刘惠宁, Stuart SN, Chanson JS, Cox NA, Fischman DL (2006) 中国两栖动物保护需求总述. 中国科学C辑: 生命科学, 36, 570-581.] | |
[60] |
Xu AC, Jiang ZG, Li CL (2021) The Chinhai spiny newt needs a safer habitat. Science, 372, 801-802.
DOI PMID |
[61] |
Yang WZ, Liu C, Jiang JP, Li C, Xie F (2011) Age structure of females in a breeding population of Echinotriton chinhaiensis (Caudata: Salamandridae) and its conservation implication. Asian Herpetological Research, 2, 91-96.
DOI URL |
[62] |
Yang WZ, Wang J, Jiang JP, Li C, Xie F (2014) Development and characterization of fifteen polymorphic microsatellites for extremely endangered salamander, Echinotriton chinhaiensis. Asian Herpetological Research, 5, 281-283.
DOI URL |
[63] | Zhang XC, Jing K (2014) A summary on amphibian breeding migration. Sichuan Journal of Zoology, 33, 943-953. (in Chinese with English abstract) |
[张晓翠, 敬凯 (2014) 两栖类的繁殖迁徙研究概述. 四川动物, 33, 943-953.] | |
[64] | Zhao EM (1998) China Red Data Book of Endangered Animals of Amphibia & Reptilia. Science Press, Beijing. (in Chinese) |
[赵尔宓 (1998) 中国濒危动物红皮书·两栖类和爬行类. 科学出版社, 北京.] |
[1] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
[2] | 江红星, 楚国忠, 钱法文, 陆军. 江苏盐城黑嘴鸥(Larus saundersi)繁殖微生境的选择[J]. 生物多样性, 2002, 10(2): 170-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn