生物多样性 ›› 2012, Vol. 20 ›› Issue (3): 280-285.doi: 10.3724/SP.J.1003.2012.06040

所属专题: 传粉生物学:理论探讨与初步实践

• 综述 • 上一篇    下一篇

花对称性的研究进展

李交昆1, 唐璐璐2*   

  1. 1中南大学资源加工与生物工程学院,长沙 410083
    2中南大学生物科学与技术学院,长沙 410013
  • 收稿日期:2012-01-30 修回日期:2012-03-15 出版日期:2012-05-20
  • 通讯作者: 唐璐璐 E-mail:lltang@csu.edu.cn
  • 基金项目:

    鸭跖草属植物的花部对称型进化研究;污染铜矿区鸭跖草生殖生物学研究

Progress in the study of floral symmetry

Jiaokun Li1, Lulu Tang2*   

  1. 1School of Minerals Processing and Bioengineering, Central South University, Changsha 410083

    2School of Biological Science and Technology, Central South University, Changsha 410013
  • Received:2012-01-30 Revised:2012-03-15 Online:2012-05-20
  • Contact: Lulu Tang E-mail:lltang@csu.edu.cn

花对称性(floral symmetry)是被子植物花部结构的典型特性之一, 主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称, 而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新, 被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段, 随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明, 在传粉过程的不同阶段, 花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花, 两侧对称的花提高了特异性传粉者的选择作用, 增加了花粉落置的精确性, 进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明, CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源, 与其他花部构成之间是否协同作用, 一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。

Floral symmetry is a classical feature of floral diversity. Actinomorphy and zygomorphy are two main types of floral symmetry in angiosperms. Zygomorphic flowers are thought to have evolved from ancestors whose flowers are actinomorphic. Transition from actinomorphy to zygomorphy has been recognized as a key innovation and is considered crucial in the rapid diversification of angiosperms. In recent years, great progress has been made towards understanding the mechanisms underlying changes in floral symmetry during the evolution of angiosperms in wide-ranging botanical disciplines. Evidence from floral development studies indicates that zygomorphy appears before organ initiation, and persists throughout floral development, or appears later at various stages of development. Reduction, suppression and differential elaboration of floral organs are the major determinants of zygomophy. Floral symmetry is strongly selected by pollinators during the different stages of pollination process. In addition, the tighter flower–pollinator interaction found in zygomorhpic flowers may contribute to increased reproductive success through increased precision in pollen placement on the pollinator’s body. The molecular base of flower symmetry has been explored in core eudicots, and available evidence indicates that CYC-like genes play an important role in the control of zygomorphy. Future prospects in the study of floral symmetry in development biology, pollination biology and molecular genetics are discussed.

Almeida J,Rocheta M,Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Development,124,1387-1392.
Busch A,Zachgo S (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the USA,104,16714-16719.
Citerne H,Jabbour F,Nadot S,Damerval C (2010) The evolution of floral symmetry. Advances in Botanical Research,54,85-137.
Crane PR,Friis EM,Pedersen KR (1995) The origin and diversification of angiosperms. Nature,374,27-33.
Cubas P,Lauter N,Doebley J,Coen ES (1999a) The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal,18,215-222.
Cubas P,Vincent C,Coen ES (1999b) An epigenetic mutation responsible for natural variation in floral symmetry. Nature,401,157-161.
Doebley J,Stec AO,Hubbard L (1997) The evolution of apical dominance in maize. Nature,386,485-488.
Douglas AW (1997) The developmental basis of morphological diversification and synorganization in flowers of Conospermeae (Stirlingia and Conosperminae,Proteaceae). International Journal of Plant Sciences,158,S13-S48.
Douglas AW,Tucker SC (1996) Comparative floral ontogenies among Persoonioideae including Bellendena (Proeaceae). American Journal of Botany,83,1528-1555.
Doyle JA,Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with morphological data. International Journal of Plant Sciences,161,S121-S153.
Du ZY,Wang ZY (2008) Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). Journal of Systematics and Evolution,46,23-31.
Endress PK (1999) Symmetry in flowers: diversity and evolution. International Journal of Plant Science,160,S3-23.
Endress PK (1999) Symmetry in flowers: diversity and evolution. International Journal of Plant Science,160,S3-S23.
Endress PK (2001) Evolution of floral symmetry. Current Opinion in Plant Biology,4,86-91.
Endress PK,Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany,96,22-66.
Feng X,Zhao Z,Tian Z,et al. (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the USA,103,4970-4975.
Fenster CB,Armbruster WS,Wilson P,Dudash M,Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology,Evolution,and Systematics,35,375-403.
Frey FM,Davis R,Delph LF (2005) Manipulation of floral symmetry does not affect seed production in Impatiens pallida. International Journal of Plant Science,166,659-662.
Friedman WE (2009) The meaning of Darwin’s “abominable mystery”. American Journal of Botany,96,5-21.
Galego L,Almeida J (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & Development,16,880-891.
Gao Q,Tao JH,Yan D,Wang YZ,Li ZY (2008) Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Development Genes and Evolution,218,341-351.
Gomez JM,Perfectti F,Camacho JPM (2006) Natural selectin on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. The American Naturalist,168,531-545.
Gong YB,Huang SQ (2009) Floral symmetry: pollinator-mediated stabilizing selection on flower size in bilateral species. Proceedings of the Royal Society B: Biological Sciences,276,4013-4020.
Grant V (1949) Pollination systems as isolating mechanisms in angiosperms. Evolution,3,82-97.
Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden,86,373-406.
Herrera J (2009) Visiblility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants. Annals of Botany,103,1119-1127.
Hileman LC,Baum DA (2003) Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution,20,591-600.
Hu SS,Dilcher DL,Jarzen DM,Taylor DW (2008) Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the USA,105,240-245.
Jabbour F,Craene LPRD,Nadot S,Damerval C (2009) Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Annals of Botany,104,809-822.
Jabbour F,Damerva C,Nadot S (2008) Evolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy? Annals of Botany,102,153-165.
Kalisz S,Ree RH,Sargent RD (2006) Linking floral symmetry genes to breeding system evolution. Trends in Plant Science,11,568-573.
Kellogg EA (2000) The grasses: a case study in macroevolution. Annual Review of Ecology,Evolution,and Systematics,31,217-238.
van Kleunen M,MeierA,Saxenhofer M,FischerM (2008) Support for the predictions of the pollinator-mediated stabilizing selection hypothesis. Journal of Plant Ecology,1,173-178.
Luo D,Carpenter R,Copscy L,Vincent C,Clark J,Coen ES (1999) Control of organ asymmetry in flowers of Antirrhimum. Cell,99,367-376.
Luo D,Carpenter R,Vincent C,Copscy L,Coen ES (1996) Origin of floral asymmetry in Antirrhimum. Nature,383,794-799.
Neal PR,Dafni A,Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems: terminology,distribution,and hypotheses. Annual Review of Ecology and Systematics,29,345-373.
Preston JC,Kost MA,Hileman LC (2009) Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist,182,751-762.
Rudall PJ,Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist,162,25-44.
Sargent RS (2004) Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society B: Biological Sciences,271,603-608.
Schmidt RJ,Ambrose BA (1998) The blooming of grass flower development. Current Opinion in Plant Biology,1,60-67.
Song CF,Lin QB,Liang RH,Wang YZ (2009) Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evolution Biology,9,244.
Ushimaru A,Dohzono I,Takami Y (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia,160,667-674.
Ushimaru A,Hyodo F (2005) Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research,7,151-160.
Vincent CA,Coen ES (2004) A temporal and morphological framework for flower development in Amirrhinum majus. Canadian Journal of Botany,82,681-690.
Wang HC,Meng AP,Li JQ,Feng M,Chen ZD,Wang W (2006) Floral organogenesis of Cocculus orbiculatus and Stephania dielsiana (Menispermaceae). International Journal of Plant Sciences,167,951-960.
Wolfe LM,Krstolic JL (1999) Floral symmetry and its influence on variance in flower size. The American Naturalist,154,484-488.
Zhou XR,Wang YZ,Smith JF,Chen R (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist,178,532-543.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed